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CHAPTER ONE 

BACKGROUND AND RELEVANCE 

 

1.1 The Liver:  Anatomy and Physiology Overview 

The liver is the largest internal organ that weighs around 1.2-1.6 kg. It performs over than 

500 metabolic functions that can be classified in three main categories: (1) secretion; e.g. 

proteins like albumin, urea and bile, (2) storage; glycogen and fat, and (3) detoxification utilizing 

the broad range of cytochrome P450 enzymes that hepatocytes have.  

The liver consists of smaller hexagonal-shaped functional units named hepatic lobules. Each 

lobule has a central vein which is the terminal of the hepatic venules, and at the corners the 

portal triads which consist of a venule (branch of portal vein), an arteriole (branch of hepatic 

artery), and a bile duct (Fig. 1). The liver is consider a very dense organ with hepatocytes 

predominate in both number and volume [1]. The total number of hepatocytes in a rat weighing 

400g is estimated to be 18.5 X 108; which is equivalent to 1.4 X105 per unit volume (mm3)[2]. 

The functional unit of the liver is called acinus (plural acini) (Fig. 1); it consists of ellipsoidal 

mass of hepatocytes aligned around the hepatic arterioles and portal venules just as they 

anastomose into sinusoids. Each acinus can be divided into three zones based on its proximity to 

the arterial blood supply; where zone one represents the hepatocytes that are closest to the 

arterioles and hence best oxygenated, while zone three refers to the hepatocytes that are farthest 

from the arterioles and have the poorest supply of oxygen. Therefore, hepatocytes in zone one 

are the first ones to be exposed to blood coming from GI system. In addition, and based on the 

blood supply for each zone, each zone has its unique enzymatic system for detoxification 
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purposes. The oxygen concentrations in the sinusoid are in the range from 25 mmHg 

(perivenous) to 70mmHg (periportal) [3]. 

 

Figure 1: Functional unit of the liver. Hepatic lobules as hexagonal-shaped functional units (left) [4] . 
Hepatic acini overlayed onto lobules in the diagram (right) [5]. 

 

The lobules mainly consist of one-cell-thick chords of hepatocytes forming canals that are 

called “sinusoids” (Fig. 2A). Sinusoids are lined, along with the hepatocytes, with endothelial 

cells, stellate cells and Kupffer cells. The blood flows in the sinusoids where plasma and proteins 

can migrate through endothelial cells via a unique feature called fenestrations (100-150 nm) into 

the Space of Disse. At this space, direct contact with the hepatocytes occurs and uptake of 

nutrients and oxygen by the hepatocytes takes place. The uniqueness of hepatic environment 

comes from the space of Disse as it lacks any continuous barriers and it is rich with different 

types of basement membrane proteins (Fig. 2B). 
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Figure 2: Human liver sinusoid. (A) Digital image (H&E staining) showing the hepatocytes organized in 
one-cell-thick chords [6]. (B) Rat liver sinusoid SEM image (width of sinusoid is 5 µm) showing the 
fenestrated endothelial cells (100 nm in diameter), the microvilli of hepatocytes and the space of Disse 
[7]. 

 

1.2 Orthotopic Liver Transplantation and Other Solutions   

Liver diseases can be resulted from hepatotoxicity; for example hepatotoxicity caused by 

drug-induced liver injury (DILI). The manifests come in various forms: (1) functions 

dysregulation, (2) injury to hepatic parenchyma, (3) cell replacement/necrosis, or (4) cancer. 

Some examples of such injuries are: steatosis, fibrosis and cirrhosis and the result could lead to 

“end-stage liver diseases” and the need for liver transplant. 

  According to the Organ Procurement and Transplantation Network (OPTN) - U.S. 

Department of Health and Human Services, there are 15,428 candidates on the waiting list for a 

liver transplantation as of January 4th, 2015[8]. The majority of eligible patients die while on the 

waiting list because of the severe donor shortage. The estimated cost for such procedure is 

$577,100 according to the United Network for Organ Sharing (UNOS), adding to that almost 

$21,900 for annual follow-up and medications [9].  

A B 
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 Orthotopic Liver Transplantation (OLT) is still the only treatment for end-stage liver 

diseases. Despite its therapeutic potential, the procedure is limited by: donor organ shortage, the 

need for a life-long immunosuppressive therapy and very high cost (~$500,000). Temporary 

liver support systems are meant to replace a greater spectrum of liver functions over a short 

period of time (days to weeks) and may also serve as a bridge to OLT by allowing more time to 

find a better match between donor and recipient or stabilize the patient prior to surgery. Various 

non-biological approaches, such as hemodialysis, hemoperfusion, plasmapheresis and plasma 

exchange, have had a limited success because of the insufficient replacement of the synthetic and 

metabolic functions of the liver. Extracorporeal biological treatments, i.e. life support systems 

that are analogous in concept to kidney dialysis machines, specifically designed for liver failure 

patients, have shown some beneficial results but are difficult to implement in a clinical setting. 

An example of extracorporeal system is the bioartificial liver system (BAL), in which hepatoma 

cell lines or isolated hepatocytes are incorporated into a bioreactor and induced to perform the 

hepatic functions by processing the blood or plasma of liver failure patients [10, 11]. Although 

these systems are more complicated than the filtration and dialysis systems, they can offer the 

biochemical and specific functions which are not offered by the no-cells systems. Table 1 

summarizes some clinical trials for temporary extracorporeal liver support systems [10]. 

Hepatocyte transplantation offers the possibility of increasing the survival rate as it can 

be used as a therapeutic tool. This is dependent upon the ability to re-assemble isolated 

hepatocytes into a functional organ by allowing the use of organs which would be considered too 

traumatized for whole liver transplants.  However, such organs may be an adequate source of 

healthy hepatocytes.  Hepatocyte transplantation also has great potential for providing cures for a 

variety of liver-based, metabolic diseases, e.g., treatment for glycogen storage disease 
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type 1a [12], familial hypercholesterolemia [13] and Congenital hyperbilirubinemia (Crigler–

Najjar syndrome) [14].  

Device Configuration 
Cell Mass and 

Source 

Perfusate and 

Treatment 

Protocol 

Trial Phase 

Whole Liver Perfusion     
Whole pig, baboon or 
human liver 

  Whole blood, 5 hours 
median perfusion time, 
most patients received 1 
or 2 perfusions 

I/II 

Dialysis and Filtration 

Systems 

    

MARS (Teraklin AG, 
Rostock, Germany) 
 

Albumin-loaded 
hemofilter, 60-kD cut-off 

None Whole blood, 12–132 
hours 

I/II 

Liver Dialysis Unit 
(HemoCleanse 
Technologies, West 
Layfayette, IN) 
 

Hemodiabsorption across 
5-kD cut-off cellulosic 
membranes 

None Whole blood, 6 
hours/day; 
up to 5 days 

FDA Approved 

Prometheus (Fresenius 
Medical Care AG, Bad 
Hornburg, Germany) 

Hemofilter, 250-kD 
cutoff, connected to two 
absorber cartridges, in 
series with conventional 
dialyzer 

None Whole blood, up to 12 
hours divided into 2 
treatments over 2 days 

I 

 

Bioartificial Livers 

    

HepatAssist (Circe 
Biomedical, Lexington, 
MA) 

Hollow-fiber, 
polysulphone, 0.15– 
0.20 μm pore size 

50 g cryopreserved primary 
porcine hepatocytes on 
microcarrier beads 
 

Plasma, 6 hours/session; 
up to 14 sessions 

II/III 

BLSS (Excorp Medical, 
Oakdale, MN) 

Hollow-fiber, cellulose 
acetate, 100-kD cutoff 
 

70–100 g primary porcine 
hepatocytes 

Whole blood, 12 
hours/session; up to 2 
sessions 
 

I/II 

ELAD (Vital Therapies, 
La Jolla, CA) 
 

Hollow-fiber, cellulose 
acetate, 120-kD cutoff 

100 g human hepatoblastous 
CJA cells per cartridge, 
up to 4 cartridges/device 
 

Plasma, continuous up to 
107 hours 

II 

AMC-BAL (Hep-Art 
Medical Devices, B.V., 
Amsterdam, 
The Netherlands) 
 

Spirally wound, 
nonwoven polyester 
matrix, no membrane  

70–150 g primary porcine 
hepatocytes 

Plasma, up to 18 
hours/sessions up to 2 
sessions 

I 

Radial-flow bioreactor 
(Sant’Anna University 
Hospital, Italy) 
 

Radial-flow bioreactor 230 g primary porcine 
hepatocytes 

Plasma, 6–24 hour 
treatments, mostly in one 
session 

I/II 

LiverX-2000 (Algenix, 
Inc., Minneapolis, MN 

Cells embedded in 
collagen matrix within 
hollow-fibers 
 

40 g primary porcine hepatocytes 
per cartridge, 2 cartridges/device 
 

Blood I/II 

Hybrid bioartificial liver 
(Hepatobiliary Institute of 
Nanjing University, 
China) 

Polysulfone hollow-fiber 
cartridge with 100-kD 
cut-off combined with 
adsorption column 

100 g primary 
porcine 
hepatocytes 

Plasma, one 6-hour 
treatment, except one 
patient with 2 - 6 hour 
treatments 

I 

 

Table 1: Clinical Trials for Temporary Extracorporeal Liver Devices. ELAD, Extracorporeal liver assist device; 
BLSS, bioartificial liver support system; AMC-BAL, Amsterdam bioartificial liver system; MARS, molecular 
adsorbent recycling system; FDA, Food and Drug Administration.[10] 
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CHAPTER TWO 

 CURRENT TREATMENTS AND RESEARCH IN HEPATIC TISSUE ENGINEERING 

 

2.1 Main Challenges in the Hepatic Tissue Engineering Field 

Primary hepatocytes lose their functions and their specific phenotype when removed 

from their environment [15]. They are highly dependent on the cell-cell contact and   attachment 

to the extracellular matrix (ECM)[16]. Therefore, when trying to culture hepatocytes in vitro, one 

should take in consideration the followings: 1) the material used as extracellular matrix [17] , 2) 

co-culture with non-parenchymal cells [18], and 3) the use of growth factors [19]. The main 

obstacles to success are closely tied to the high metabolic rate of hepatocytes and the associated 

limitations in oxygen and nutrient transport especially during cell attachment and adaptation to a 

new environment.  Recent published data suggest that dynamic perfusion of culture medium 

through three dimensional scaffolds using bioreactors promote new tissue formation and 

enhances hepatic functions [10, 11, 20, 21]. Each of these factors will be discussed in the 

following paragraphs of this chapter. 

 

2.2 The Extracellular Matrix (ECM) Materials 

The main function of extracellular matrix is to provide tissues with their specific 

mechanical and biochemical properties. Different cell types that reside in that ECM space are 

responsible for its synthesis and maintenance, while ECM, in turn, also has an important impact 

on cellular functions.  

Cell–matrix interactions play a dominant role in cell attachment and migration, as well as 

regulating and promoting cellular differentiation and gene expression levels. These specific 
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functions are thought to be mediated by cell specific-receptors and cell binding epitopes on many 

matrix molecules [22]. 

 Various studies have been done on different materials in order to mimic the extracellular 

matrix, where cells adhere and proliferate. Some of the materials investigated in this field are: 

poly-L-lactic acid (PLLA), poly (D, L-lactide-co-glycolide) (PLGA), poly(ethylene glycol) 

(PEG) and polyethylene terephthalate (PET) [23]. Non- polycarbonate materials also was used, 

for example, the commercially available self-assembling peptide PuraMatrix®. This material is a 

fully synthetic and resorbable hydrogel composed of repeating amino acid sequences of 

Arginine-Alanine-Aspartic Acid-Alanine prepared in an aqueous solution. PuraMatrix® self-

assembles into nanofibers on a scale similar to the extracellular matrix when exposed to 

physiological levels of salt, forming a flowable hydrogel. When hepatocytes were cultured in 

PuraMatrix® nanoscaffolds, they were able to synthesize albumin and secrete urea for up to 90 

days of culture [24]. Regarding hepatocytes cultured in bioreactors, the major obstacle is to keep 

them attached while perfusing the medium and sustain the shear stress [25].   

Primarily, chitosan and collagen have been studied extensively as they are biocompatible 

and enhance attachment and proliferation for many types of cells like hepatocytes [26-29]. Dunn 

et al. [28] were able to maintain hepatic specific functions (secretion of albumin, transfirin, 

fibrinogen, bile acids and urea) for more than 6 weeks in vitro.  They cultured primary rat 

hepatocytes in a sandwich configuration; consisting of two layers of hydrated type I collagen 

prepared from rat tail tendons. This sandwich configuration successfully maintained the cellular 

polarity normally found in the liver. In contrast, cells cultured on a single layer of collagen gel 

failed to maintain hepatic functions.  
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2.2.1 Chitosan  

Chitosan is derived from chitin (naturally found in the arthropod exoskeletons) by 

deacetylation in different degrees ranging between 50% and 90% (Fig. 3). It is considered 

biocompatible; as it evokes minimal foreign body reaction, and biodegradable; as implants made 

of chitosan are hydrolyzed by lysozyme-mediated activity. The degradation rate is inversely 

proportional to the degree of crystallinity [30]. It has been found that after four hours of 

incubation time of 50% acetylated chitosan with lysozyme in 0.1 molar phosphate buffer at pH 

5.5 and 37°C , the chitosan solution lost 66% of its viscosity which indicated sufficient 

degradation of it [31, 32]. Due to its (above mentioned) natural properties, chitosan is utilized in 

research involving  implantable applications in many fields such as orthopedic/periodontal, tissue 

engineering, wound healing and drug/gene delivery [33].   

 

Figure 3: Chitosan molecular structure [30]. 

  

Chu et al.[27] extensively studied the effects of chitosan nanofiber scaffolds on 

hepatocyte cells viability, attachment and hepatic functions. They have showed that chitosan 

nanofibers promote hepatocytes adhesion, albumin secretion, urea synthesis, cytochrome 

P4501A1 enzymatic activity and glycogen synthesis compared to control. The cytotoxicity assay 

for lactate dehydrogenase (LDH) and tumor necrosis factor α (TNF-α inflammatory cytokine) 
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releases suggested that chitosan nanofibers have no effect compared to the control. On the other 

hand, Jiankang et al. [34] prepared porous and well-organized (with hepatic chambers and 

channel network) scaffolds from chitosan that was cross linked with gelatin. The scaffold has 

pre-defined channels and chambers fabricated by freeze-drying then lyophilization. They seeded 

these scaffolds with primary hepatocyte by shaking the 24-well plate that has the scaffolds 

placed in. Their results showed that hepatocytes attached well to the chitosan-gelatin matrix and 

they secreted albumin and urea during the first week of culture in higher amounts at the well-

organized scaffold compared to the porous scaffold. 

Chitosan highly- porous scaffolds can be made by controlling the rate of solution 

freezing, which in turn controls the direction of the thermal gradient. Such scaffolds have large 

surface-to-volume ratio which enhances hepatocyte attachment and angiogenesis. Chitosan is 

considered a biologically active material due to the presence of amine group and alcohol group 

in its chemical structure. This cationic nature allows ionic and covalent interactions with other 

materials like glycosaminoglycans (GAGs) and Proteoglycans (PGs) [30]. Scientists used this 

unique property to complex different materials into chitosan scaffolds. T. Bou-Akl [35] in her 

dissertation, showed that hepatocytes tend to form spheroids (with increase in size over time) 

when seeded on chitosan membranes. The membranes were modified with GAGs such as: 

heparin, heparan sulfate, dermatan sulfate and modified dextran. When hepatic functions were 

evaluated, the highest rates for albumin secretion measured on heparin modified membranes. 

However, urea secretion results showed lower amounts compared to the collagen gel sandwich 

configuration (the control). When collagen was added to the modified chitosan membranes, 

hepatocytes showed higher rates of spread and attachments, but lower albumin synthesis rates. 

On the other hand, urea secretions increased as the amount of collagen increases, but yet it was 
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in amounts lower than the control. She concluded that in terms of albumin synthesis, hepatocytes 

in three dimensional configurations had better functions. While in terms of urea synthesis, 

hepatocytes in two dimensional cultures performed better. This could be the result of the easier 

accessibility to oxygen through diffusion from the medium to spread hepatocytes in monolayer 

cultures. More attempts were made towards enhancing chitosan for better hepatic functions and 

hepatocytes viability. Li et al. [26] investigated the effects of complexing chitosan scaffolds with 

sodium alginate and heparin via ionic interactions, on hepatocytes morphology and metabolic 

activities and they used chitosan membranes as control. Hepatocytes showed more attachment on 

the modified scaffolds than the control and they were able to maintain their spherical 

morphology with many microvilli on the cell membranes. Regarding albumin synthesis and urea 

secretion; the highest rates were within the heparin modified chitosan. In general, modified 

chitosan scaffolds maintained better hepatic functions than the unmodified chitosan. The 

rationale was that hepatocytes synthesize different types of extracellular proteins which contain 

GAGs integration sites on them. These sites allow the GAG molecules to bind and form such 

away between the hepatocytes and the surrounding materials. Simiralry, with sodium alginate; 

polyelectrolyte complexes were formed which played a significant role in maintaining 

hepatocytes attachment and metabolic activities. 

 

2.2.2 Glycosaminoglycans (GAGs) 

 Proteoglycans (PGs) are localized at the cell surface and in the extracellular matrix. They 

are believed to have important roles in cell-cell interaction, cell growth and differentiation, 

localization of bounded proteins to the cell surface and mediate cell functions. The biological 

interactions mediated by PGs are believed to be due to the presence of the natural 
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polysaccharides glycosaminoglycan (GAG) chains. Hence, GAGs are considered biocompatible 

materials. Heparan sulfate (HS) and its highly sulfated form; heparin (HEP), are the most 

abundant GAGs in the liver and they bind over 100 different proteins, including enzymes, 

protease inhibitors, lipoproteins, growth factors, chemokines, extracellular matrix proteins, 

receptor proteins and nuclear proteins [36-38].  

GAGs bounded to chitosan scaffolds are expected to facilitate the binding and 

organization of deposited extracellular matrix components to the implant. Consequently, this 

process will enhance the integration of implant with existing tissue. As chitosan has the 

positively charged amino groups; GAGs can be easily immobilized on it either ionically or 

covalently due to their negative charge. The covalent immobilization of GAGs to chitosan can be 

achieved by forming an amide bond between the carboxyl group and the amino group using the 

zero-length cross-linker 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride (EDC); 

a carboxyl activating agent for amide bonding with primary amines through the reaction 

illustrated in figure 4 below [39].  

Growth factors like fibroblast growth factor (FGF), hepatocyte growth factor (HGF), 

vascular endothelial growth factor (VEGF) and heparin-binding epidermal growth factor (EGF) 

are dependent on heparin for biological activity mediated through their high-affinity signal-

transducing receptors [36].  
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Figure 4: Covalent immobilization of GAGs to chitosan. Schematic representation of the amide bond 
formation between chitosan (CHI) and GAG [39]. 

 

 In view of the reported observations, for the present work, heparin has been chosen to 

modify the chitosan scaffolds. It has been shown that heparin is used as anticoagulant factor as 

well as a binding site for growth factors. In addition, heparin is able to stimulate some cell types’ 

proliferation like endothelial cells and dermal and epidermal cells as well as being  useful for 

culturing multiple cell types [38, 40, 41]. This choice is supported by our previous studies which 

showed that chitosan modified with HEP has the best results among other GAGs tested (e.g. 

dermatan sulfate and hyaluronic acid) in terms of enhancing hepatic functions and hepatocytes 

viability for the reasons discussed above [35]. 

 

2.3 The Need to Re-create and Maintain the Polarized Plasma Membrane of 

Hepatocytes   

 Epithelial cells express a special feature of cell membrane polarity which is needed in this 

type of cells to provide a boundary between different extracellular components. This is achieved 

by expressing specific lipids and proteins at each segment of the cell membrane; the apical 
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domain that is in contact with the external environment, and the basal domain which faces the 

blood circulation. These apical and basal domains are separated by tight junctions that 

distinguish and maintain their specific lipids and protein composition and prevent any 

intermixing. Distinctly, hepatocytes express special geometry where their apical domains at the 

lateral membranes between two neighboring cells and forming the bile canalicular tubules. The 

basolateral domains face the blood circulation and form the sinusoids (Fig. 5) [42].  Hence, 

hepatocytes, as epithelial cells, need the basement membrane to be maintained to provide the 

physical support and the polarity they require. The connective tissues beneath the basement 

membrane secrete the necessary ECM elements to maintain its integrity.  

 
Figure 5: Epithelial cell membrane polarity. (A) Schematic diagram illustrating the different plasma 
membrane domains in epithelial cells in general. (B) Schematic showing the distinct polarized geometry 
displayed by hepatocytes [42]. 

 

 Maintaining the cell surface polarity in in vitro cultures is a complex and dynamic 

process. It is greatly influenced by the cell-cell interaction, cell-extracellular interaction, 

cytokines and growth factors. In addition, evidences suggest that cell-cell junction protein might 

have alternate functions at other subcellular sites [43-46]. Comprehensive understanding of such 
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parameters and interactions will lead to design of an in vitro model that aid to maintain this 

polarization and help in preventing hepatocytes from de-differentiation. Unfortunately, freshly 

isolated hepatocytes rapidly lose their polarity after the isolation. However, if they are cultured in 

the collagen gel sandwich configuration, they can re-polarize in several days [28].  

 

2.4 Co-Culture Systems and the Need for Three Dimensional Models   

The adult liver consists of a complex multicellular structure (Fig. 6); which provides a 

scaffold for many complex cell– cell interactions that allow for the effective and coordinated 

liver specific functions [47, 48]. 

 

 

Figure 6: Liver sinusoid. Schematic diagram of the adult liver sinusoid which consists of: differentiated 
hepatocytes, fenestrated endothelial cells, space of Disse, lipocytes (stellate or Ito cells), bile ductules, 
and Kupffer cells [47]. 

 
 

It would be of great help in the field of liver tissue engineering to fully understand how 

different cell types interact together in order to achieve the liver-specific functions and tissue 

structure. When hepatocytes were grown on Matrigel (a gelatinous protein mixture derived from 

mouse tumor cells, but it’s not a well-defined matrix) with pre-formed endothelial vascular 

structures, Nahmias et al. [49] noticed that the hepatocytes migrated and adhered towards these 

Differentiated Hepatocytes 

Ito Cell 

Space of Disse 

Sinusoid 
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structures and formed a new structure that resembled the in vivo sinusoids. These new structures 

were able to retain stable cytochrome P450 gene expression and activity and stable albumin gene 

expression and secretion rate for more than two months period of time. Nevertheless, it is still 

poorly understood how heterotypic interactions facilitate the maintenance of differentiated 

hepatocytes. Goulet et al. [43] noticed that microinjecting hepatocyes with Lucifer yellow CH 

molecules caused a spreading of the dye to the neighboring hepatocytes. In those cultures, 

hepatocytes were co-cultured with other non-parenchymal cells. On the other hand, this dye 

spreading wasn’t observed in cultures where hepatocytes were cultured alone. The dye spreading 

indicates formation of gap junctions between hepatocytes; which play significant role in 

maintaining their phenotype and specific functionality, while no heterologous communication 

was observed between hepatocytes and endothelial cells. They interpreted these results as due to 

the fact that these two populations are separated by the space of Disse in the liver.  

In liver tissue engineering, investigators should address problems involving 

microvascular network formation in three dimensional cultures; which showed advantages over 

the two dimensional ones by mimicking hepatic lobules and sinusoids and hence resulted in 

better hepatic functional maintenance. The mechanism behind the actual organization of liver 

sinusoids and how the endothelial vessels are coated with hepatic tissues has never been 

achieved in vitro. Crucial elements that regulate hepatocytes viability and functionality are the 

cell-cell interactions and the cell-substrate interactions while to success in developing a 

functional tissue engineered solution the main obstacles to overcome are closely tied to the high 

metabolic rate of hepatocytes and the associated limitations in oxygen and nutrient transport.  

[50-52].  
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It is well known that the ECM in the liver is similar in structure as other epithelial organs, 

e.g. kidneys and lungs. The uniqueness of the hepatic ECM comes from the space of Disse where 

it lacks of any continuous filtration barriers as the basement membrane and the endothelial cells 

there has the fenestrations feature. This configuration is typical for the functions that this space 

provides a bidirectional exchange passage for the molecules between hepatocytes and blood 

stream for a distance that is < 1µm. It is also shown that collagen type I in the space of Disse 

present as a network of cables while other types of collagen, e.g. type III and IV and fibronectin 

present as discontinuous deposits around collagen fibers (Fig. 7) [53]. Table 2 summarizes the 

potential of each cell type in the normal liver to secrete ECM components [54]. 

 

Figure 7: Different ECM components present in the space of Disse; Collagen Type I, Type III , Type IV 
and Fibronectin (see legend for symbols representation) [53]. 
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Table 2: The potential of each cell type in the normal liver to secrete certain types of ECM components [54]. 

 

 Histologically, every hepatocyte cell receives oxygen and nutrients by at least one 

sinusoid. This vascular network is crucial to both the viability of the hepatocytes and the 

detoxification of blood. Additionally, most of the hepatic non-parenchymal cells are located near 

the sinusoids which make vascularization an important focus for further tissue engineering 

studies. 

Several studies investigated the co-culturing of different types of cells with primary 

hepatocytes [51, 52, 55-57]. Their results indicated that hepatocyte viability and liver-specific 

functions maintained stable over a culture period of several weeks in vitro. They used different 

types of cells in their experiments, e.g. biliary epithelial cells, stellate cells, Kupffer cells as well 
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as non-hepatic endothelial cells and fibroblasts [51, 52, 55-57]. Yamada et al. [58] , for example, 

used lactone-modified Eudragit polymer that contains β-galactose residue; which can act as a 

ligand of the asialoglycoprotein cell surface receptor expressed by hepatocytes. They mixed 

equal numbers of hepatocytes and liver non- parenchymal cells and seeded them in tissue culture 

dishes that were previously coated with the modified polymer. They noticed that hepatocytes 

rapidly aggregated and formed spheroids and both albumin secretion and 7EC reduction rate 

were increased by adding the non-parenchymal population compared with hepatocytes cultures 

alone. In a different study, Sudo et al. [51] tried to approach the co-culture system from a 

different angle. They tried to create a vascularized liver model by co-culturing primary rat 

hepatocytes with human microvascular endothelial cells and with rat microvascular endothelial 

cells in a three dimensional collagen scaffolds. The scaffold was located between two parallel 

microfluidic chambers where the culture medium was allowed to perfuse through the scaffold 

with a flow velocity of 27-35 µm/min (based on the physiological value 36 µm/min).  In both co-

cultures, hepatocytes formed bile canalicular structures and were able to exhibit P450 

cytochrome activity which indicates that they maintained their differentiated functions. Another 

group who also investigated the co-culture systems Lu et al. [55]. They found that the liver- 

specific functions were significantly enhanced when primary rat hepatocyte spheroids were 

cultured with NIH/3T3 mouse fibroblasts on galactosylated poly- vinylidene difluoride (PVDF) 

compared with the hepatocyte spheroids cultured alone. They also found that this PVDF 

substrate stimulated the hepatocytes to re-organize into spheroids with the fibroblasts coating 

them which could mimic the liver regeneration.  The reason for PVDF to stimulate the spheroid 

formation was due to the presence of galactose ligands which interact with asialoglycoprotein 

receptors on the hepatocytes membranes. In an interesting study by Abu-Absi et al. [56], it was 
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revealed that when culturing primary rat hepatocytes with rat hepatic stellate cells, HSCs 

proliferated rapidly and exhibited a morphology similar to fibroblasts. They were also able to 

express some of the cytoskeletal proteins, e.g. α-SMA. This is the same scenario during in vivo 

wound healing; the stellate cells get activated and start producing extracellular matrix proteins, 

secreting growth factors and proliferating rapidly. The presence of the stellate cells had a 

positive effect on albumin production. This co-culture system had effects on some liver-specific 

gene expression, e.g. albumin, CYP2B1/2 and cyclophilin as their mRNA levels were higher 

than the control.  

 

2.5 Co-Culturing with Mesenchymal Stem Cells 

A possible way to achieve the maintenance of basement membrane and the cell polarity is 

co-culturing with mesenchymal stem cells (MSC).  They present important advantages such as: 

(1) easily isolated, (2) easily expanded in vitro, and (3) they are immunoprivileged and 

immunomodulatory [59]. It has been indicated in the literature that MSCs act in paracrine 

mechanisms as well as direct cell-cell contact as part of their role in immunomodulation in case 

of liver injuries [60]. 

  In addition, recent reports of experimental findings have revealed the hepatic differentiation 

potential of MSCs for in vivo cultures (it is still unclear whether MSCs found in vivo or a type of 

differentiated MSCs are involved in hepatocyte maintenance) [61]. This type of cells can provide 

numbers of cues for hepatocyte development and growth (Fig. 8). For example, membrane-

associated liver-regulating protein (LRP) is essential in maintaining the mature hepatocyte 

phenotype and it is expressed by MSCs [62]. Another example is the Connexin-43 (gap-junction 



www.manaraa.com

20 
 

 

protein) that correlates with the capacity of fat-storing cell clones in maintaining hepatocytes 

differentiated state and is expressed by MSCs as well [59].  

It has been shown that MSC can deposit a mixture of ECM proteins such as collagen types I 

& III, fibronectin, and laminin that are identical to those found in native liver [63]. 

 

Figure 8: Mechanisms of interaction between mesenchymal stem cells and hepatocytes [59] 

 

In addition, MSCs can be differentiated into endothelial cells. Wang et al. demonstrated 

the ability of murine embryonic mesenchymal progenitor cell line, C3H/10T1/2 to differentiate 

into cells that express mature endothelial cell–specific markers such as CD31 and von 

Willebrand factor [64]. This study used a parallel-plate system of fluid shear stress and 

concluded that the shear stress significantly induces expression of mature endothelial cells 

markers at both the mRNA and protein levels. Other researchers demonstrated this capability of 

MSCs obtained from different tissue sources when vascular endothelial growth factor (VGEF) 
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was added to the culture medium. Some examples of MSCs tissue sources are: umbilical cord 

Wharton’s Jelly [65], porcine bone marrow [66], kidney [67], human bone marrow [68] and 

human adipose tissue [69].  

 Mesenchymal stem cells have been thoroughly investigated in the past decade to be used 

as potential treatments for acute liver failure and liver cirrhosis [60].  

 

2.6 Porous Constructs and Dynamic Perfusion Systems  

In vitro reconstruction of liver tissues is needed to enable the transplantation of tissue-

engineered organs. In addition, there is an increasing demand for in vitro models that capture 

complex physiological and pathological events occurring in the liver [70]. Kasuya et al. [70] 

established a tri-culture model using the main three cell types occupying the space of Disse in 

their effort to mimic the natural environment for hepatocytes. The model consists of small 

hepatocytes (SHs), hepatic stellate cells (HSCs) and bovine pulmonary microvascular endothelail 

cells (ECs). SHs and HSCs formed organoids when cultured on microporous membranes were 

HSCs penetrated the pores and were distributed to the top surface of the membrane as well as 

between hepatocytes. After 14 days, ECs were seeded onto the top surface of the membrane and 

hence forming an architecture that resembles space of Disse where HSCs are located between the 

layers of hepatocytes and sinusoidal ECs. Their model was established in static conditions and 

they didn’t evaluate the hepatic specific functions.  

Dynamic perfusion systems have the advantage of producing an environment that mimics 

the hepatic sinusoid flow circuit, facilitating a differentiated phenotype, enhancing neo-

vascularization and elevating mass transport capacities [25]. Additionally, cultures under 

continuous flow are more sensitive to hormone induced tissue function and have shown to 
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improve viability, lifespan, metabolic output and in vivo-like cellular reorganization [11]. 

Designing bioreactor systems in order to improve mass transfer rates of nutrients and oxygen to 

the seeded cells is required. It is also important in the process of removing metabolic wastes and 

acidic degradation products from the biodegradable scaffolds. Chen et al. [71] were able to 

culture primary hepatocytes within a galactosylated vegetable sponge in a packed-bed bioreactor 

system. In this study, two flow rates for the medium flow were compared; 18 ml/min and 34 

ml/min. They found that at higher flow rates, hepatocytes performed better in terms of albumin 

and urea secretions over a culture period of one week and the reported rates were higher than 

other reported rates in the literature for similar systems; high enough to be compared to the 

normal rat liver secretion rates. They concluded that derivatization with galactose promoted cell-

polymer and cell-cell interactions and enhanced differentiated state of the hepatocytes.  Although 

their results showed a promising approach, it was limited due to lack of system tests for longer 

periods of time and in vivo studies. Also, their system doesn’t provide solutions for the 

vasculogenesis issue for tissue engineered constructs. The major challenge yet to be solved in the 

dynamic perfusion systems is how to provide protection from excessive shear forces which 

hepatocytes may encounter; considering that this type of cells is a very sensitive type to very low 

shear forces. 

  

2.7 Commercially Available Liver Models for Drug Screening 

The main hurdle in re-creating liver-like environment is that freshly isolated hepatocytes 

have limited stability and the lack of hierarchy and structural components of the natural liver. 

Some existing animal models that use liver slices can maintain the natural structure but they fail 

to maintain the cell stability for long culture purposes. As it was mentioned before, monolayer 
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cultures of primary hepatocytes in the collagen sandwich configuration are the most commonly 

used format for toxicity assessment and provide a suitable model for initial assessment. They are 

yet severely hindered by the lack of: (1) cell–cell interactions either via direct contact or via 

paracrine effects, (2) 3D organization, and (3) non-parenchymal cells.  

Nonetheless, freshly isolated primary hepatocytes continue to be the most relevant system 

to study in vitro drug metabolism and hepatotoxicity and provide an initial assessment of drug 

toxicity and enzyme function [72]. Figure 9 below summarizes six of the most recognized liver 

models for these purposes. In Figure 9a is a schematic diagram for the RegeneMed® model; it 

uses a transwell approach were non-parenchymal cells were seeded on a nylon screen sandwich 

insert, stabilized for a week, and then hepatocytes were added to form 3D liver tissue. This 

model uses near physiological ratio between hepatocytes and the non-parenchymal cells. Figure 

9b illustrates the Insphero® model; hepatocytes were allowed to form 3D microtissue spheroids 

using gravity enforced cellular assembly. In this model, hepatocytes and non-parenchymal cells 

were introduced into a hanging drop in a specifically designed multiwell plate which forms a 

microtissue spheroid in three days. Hepatopac® model (Fig. 9c) features a co-culture of 

hepatocytes with fibroblasts. The hepatocytes were micropatterened in discrete islands in a 24-

well plate surrounded and stabilized by the stromal cells. Figure 9d represents CellAsic® 

microfluidic liver sinusoid model. This model utilizes the lithography techniques to create an 

artificial endothelial cell like barrier to mimic the porous liver sinusoid. This model is successful 

in eliminating the need for endothelial cells and replacing them with a structural barrier which 

shields hepatocytes from shear forces while still allowing nutrient exchange. Zyoxel® (Fig. 9e) 

has the hepatocytes and non-parenchymal cells cultured in poly-carbonate scaffolds in multi-well 

plate platform. The media will flow from the reservoir to the reactor chamber by pneumatic 
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controlled underlay. The last example to mention here is the Hurel® approach (Fig. 9f); it is also 

a microfluidic model that incorporates multiple tissues to interact in a physiologically based 

pharmacokinetic model. This platform has the ability to accommodate multiple microfluidic 

microscale cell culture units and connect them to media reservoir and a pump. [72] 

 

Figure 9: Liver models. Summary of the most recognized liver models to study in vitro drug metabolism 
and hepatotoxicity. [72] 

 

2.8 Recent Hepatocyte Transplantation Research: Scaffold-less Approach  

Because of the limitations on hepatocyte donors, researchers looked into using different 

types of cells like hepatocyte progenitor cells and stem cells; they injected them as cell 

suspensions at different injection sites. Injection site is very important to provide extracellular 

matrix (ECM) for hepatocyte growth and differentiation. This approach is only valid in cases of 

metabolic diseases and acute liver failure patients where the liver natural architecture is intact 

and the requirement of homing is avoided. Some injection sites are the portal vein, the inferior 

mesenteric vein and directly into the liver. It has been shown that the infused hepatocytes 

dispersed with the host portal blood and translocated into the hepatic sinusoids. A disadvantage 
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of this technique is that the infused cells were observed in central veins indicating an increased 

risk of embolization to the lung. It remains an important issue of liver-directed cell therapy; the 

localization and detection of the infused hepatocytes within the liver parenchyma of the host [73, 

74] .  

Takebe et al. [75] demonstrated a proof-of-concept of generating vascularized, functional 

human liver from human induced pluripotent stem cells (iPSCs) liver buds. They first prepared 

hepatic endoderm cells from human iPSCs by direct differentiation. The yield was about 80% of 

the treated cells that expressed the hepatic marker HNF-4α. Then, they cultivated these cells with 

human umbilical vein endothelial cells (HUVECs) and human mesenchymal stem cells. The 

presumed human iPSC derived liver buds (iPSC-LBs) were mechanically stable and could be 

manipulated physically and they have formed endothelial network. To test whether human iPSC-

LBs were capable of generating completely functional liver, the group transplanted them in a 

cranial window model. These buds connected quickly with host vasculature within 48 h of 

transplantation and formed vascular networks similar in density and morphology to those of 

adult livers. Moreover, human blood vessels within the transplant became patent (unobstructed) 

by connecting host vessels at the edge of the transplant. These human iPSC-LB transplants also 

exhibited hepatic cord-like structures that are characteristic of adult liver after 60 days and were 

able to produce albumin and metabolize drugs. This study demonstrated a proof-of-concept that 

organ-bud transplantation offers an alternative approach to the generation of three-dimensional-

vascularized organs. In view of this, more in vivo models should be evaluated to prove the 

feasibility of this approach. 
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CHAPTER THREE 

 

HYPOTHESES AND SPECIFIC AIMS 

 

Liver transplantation is considered the optimal treatment for end-stage liver diseases. 

However, this is limited by the high demand for a matching donor which exceeds the 

availability, the high cost for both the surgery and the annual follow-up, and the need for a life-

time immunosuppressant.  Current treatments based on non-biological approaches like 

hemodialysis, hemoperfusion and plasma exchange have limited success in transforming this 

disease from fatal into treatable disorder. These therapies did not replace the metabolic and 

synthetic liver functions sufficiently. However, they provided more time for patients waiting for 

liver transplant and stabilize their medical conditions. The extracorporeal biological approaches 

such as cross dialysis and liver perfusion are hard to implement, but still provide sufficient 

solution. In the past two decades, many works have been done toward hepatocyte transplantation 

and hepatic tissue engineering. It is believed though that a hepatic mass of almost 10% (or even 

less) [10, 76] of the human liver is able to normalize many hepatic disorders and metabolic 

diseases. In this case, many liver patients could be treated with only one liver donor with 

minimal invasive surgery and less cost. The ability to reliably re-assemble isolated hepatocytes 

into a functional, “neo-organ” would greatly facilitate the development of such systems. 

However, tissue engineering of sizable implantable liver systems is currently limited by the 

difficulty of assembling three dimensional hepatocyte cultures of a useful size, while maintaining 

full cell viability which is closely related to the high metabolic rate of hepatocytes.  

 The main objective of this project is to develop tissue scaffold designs using biologically 

active materials and mesenchymal stem cell population for assembling isolated hepatocytes into 
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a functional, vascularized mini organ.  The proposed work is based on the following general 

hypotheses: (A) hepatocytes in perfused porous scaffolds can produce an environment that 

mimics the hepatic sinusoid with high mass transport capacities,  (B) Co-culturing hepatocyte 

cells with non-parenchymal cells; e.g. mesenchymal stem cells (MSCs) will limit hepatocyte 

large aggregation in the short term and promote angiogenesis in the longer term as well as 

shielding them against shear forces generated in the dynamic perfusion systems,  and (C) 

Encapsulating hepatocytes with or without MSCs will protect them from excessive shear forces 

they will be exposed to under dynamic perfusion conditions; and will provide sufficient cell-

ECM contact signal that will maintain hepatocyte polarity in three dimensional cultures. 

 These hypotheses will be tested in the following proposed experiments in order to 

develop systems for hepatocyte transplantation at a therapeutic level in vitro and in vivo.  The 

Specific Aims of the project are to: 

1) Examine the effects of different scaffold designs and two cell seeding methods on 

hepatocyte distribution and viability in three dimensional, high-porous 

chitosan/heparin perfused scaffolds. Optimization of cell seeding into three 

dimensional scaffolds is a major challenge for hepatic tissue engineering. The seeding 

method must be rapid to minimize the time that hepatocytes spend in suspension in order 

to maintain their viability. It should also allow highly efficient cell entrapment to 

maximize donor hepatocyte utilization. In addition, the seeded constructs should retain 

enough space for perfusion in vitro or vascularization in vivo. 

2) Evaluate the effects of co-culturing hepatocytes (HCs) with bone marrow 

mesenchymal stem cells (BM-MSCs) on hepatocyte specific functions and examine 

the effects of the seeding architecture on hepatocyte-MSCs organization and neo-
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tissue formation in-vitro. Recent reports of experimental findings have revealed the 

hepatic differentiation potential of MSCs in vitro . In addition, MSCs can provide a 

number of cues for hepatocyte growth and development .It is expected that co-culturing 

hepatocytes with this specific type of cells will enhance hepatocyte viability and their 

specific functions, as they will secrete and express certain proteins; connexin-43 and 

membrane-associated liver-regulating protein (LRP) for example, which are essentials in 

maintaining hepatocytes mature phenotypic state and their membrane polarity [59]. 

3) Evaluate the effects of encapsulating hepatocytes with or without bone marrow 

mesenchymal stem cells (BM-MSCs) within chitosan-GAG fibers on hepatocyte 

viability and metabolic performance under static and perfusion conditions. 

Encapsulation will provide means of protection against shear forces under dynamic 

perfusion conditions. In addition, it will provide means of the required barrier between 

exogenous cells and the host immune system in the field of bioartifical-implantable 

organs.  
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CHAPTER FOUR 

THE EFFECTS OF SCAFFOLD DESIGNS ON HEPATOCYTE DISTRIBUTION AND 

VIABILITY IN THREE DIMENSIONAL, CHITOSAN/HEPARIN SCAFFOLDS 

  

4.1 Introduction 

Optimization of cell seeding into three dimensional scaffolds is a major challenge for 

hepatic tissue engineering. The seeding method must be rapid to minimize the time that 

hepatocytes spend in suspension in order to maintain their viability. It should also allow highly 

efficient cell entrapment to maximize donor hepatocyte utilization. In addition, the seeded 

constructs should retain enough space for perfusion in vitro or vascularization in vivo. Porous 

scaffolds and dynamic perfusion systems can be designed to produce an environment that 

mimics the flow architecture of hepatic sinusoids, and elevates mass transport capacities, while 

facilitating efficient cell seeding. In this study, we compare two designs that aim to promote cell 

seeding efficiency by effectively entrapping 100 million cells (~10% of a rat liver) by 

maximizing either surface area for cell suspension inflow and subsequent perfusion culture, or 

volume for cell entrapment. Particular pore architectures may also promote vasculogenesis upon 

in vivo implantation if larger surface pores are available for vessel ingrowth. 

The objective of this study was to modify the scaffold design developed by Dr. 

Matthew’s group in previous studies, by changing the freezing methods used previously so that 

the new design will have large pores at the periphery (~500 µm), and small pores at the central 

(~10 – 20 µm). This new design will allow more vasculogenesis to the scaffold. 
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4.2 Experimental Work 

4.2.1 Materials  

Medium molecular weight (MMW) chitosan from crab shells (molecular weight about 

190- 310 KDa with 75 - 85% Deacetylated chitin), Trypan blue, FITC-conjugated secondary 

antibody solution and heparin sodium porcine mucosa were purchased from Sigma-Aldrich (St. 

Louis, MO). CellTracker™ Green CMFDA Dye was purchased from Life Technologies (by 

Thermo Fisher Scientific Inc.). ZO-1 Rabbit polyclonal antibody and Rabbit anti-Connexin 32 

were purchased from Invitrogen (by Thermo Fisher Scientific Inc.). All other chemicals and 

solvents were of analytical reagent grade. 

 

4.2.2 Collagen (Type I) Extraction from Rat Tail Tendons 

Type I collagen was extracted following the protocols described by Rajan et al. [77] and 

Elsdale et al. [78] with some modifications. Briefly, the tail was skinned first and then held by 

two surgical clamps about 5 mm from its thinner extremity (8 tails were used in each extraction). 

The collagen fibers (seen as white bundles) erre then pulled and collected in a beaker with 

normal saline (0.9% NaCl) and then rinsed twice with deionized (DI) water. The tendons were 

then moved to a beaker containing 3% acetic acid and stirred overnight at 4°C; at this point the 

solution turned into more viscous one. The solution was then filtered through 4 layers of cheese-

clothes and centrifuged at 12,000g for 2 hours at 4°C. The supernatant was collected carefully 

into 2L beaker and the pellet was discarded.  30% NaCl (volume of 1/5 of supernatant volume 

collected) was slowly dripped from a burette and the solution was allowed to sit without stirring 

for 1 hour at 4°C.  The solution then centrifuged at 4,000g for 30 min; pellets were collected and 

rinsed with 5%NaCl-0.6%acetic acid. This step was repeated two times. The pellets were finally 
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resuspended in 0.6% acetic acid and the solution was stirred for at least 48 hours at 4°C (or until 

all clumps were dissolved). The solution then dialyzed (in dialysis bags with clamped ends) 

against 1 mM HCl (10X volume), the 1mM HCl was replaced with fresh one every 4 hours for 

five times. After that, the collagen solution was collected from the bags and centrifuged at 

12,000g for 2 hours at 4°C. 3/1000 of total volume of chloroform then added for sterilization 

purposes, the solution was stirred for 48 hours at 4°C with loosen cap. The collagen solution 

concentration was determined by reading the optical density of a sample using 

spectrophotometer at a wavelength of 280 nm. The OD then was divided by 0.09 to obtain the 

concentration in mg/ml unit.  

 

4.2.3 Hepatocyte Isolation and Culture in Collagen Gel Sandwich Configuration 

 Male, Sprague Dawley rat weighing 230 to 300 grams was used as cells donor.  

Hepatocyte cells (HCs) were isolated using the two-step collagenase perfusion procedure 

described by Seglen [79] and modified by Dunn et al.  [28]. HCs viability and cell count were 

determined by Trypan blue exclusion test and it was 90%. A single isolation typically yields 500 

to 800 million hepatocytes with viability around >85% as indicated by Trypan Blue exclusion 

test of cell viability. The collagen gel sandwich culture was used; in this configuration 

hepatocyte cells were seeded onto collagen gel pre-coated culture dishes (1 million cells per 60-

mm tissue culture dish) and subsequently overlaid with a second layer of collagen gel after few 

days of incubation at 37°C and 5% CO2 , the protocol suggested applying the second layer after 

24 hours of incubation, but longer time was given to allow all dead cells to de-attach and 

subsequently removed from the culture  [28]. The culture medium for HCs consisted of 

Dulbecco's modified eagle medium (DMEM)- high glucose supplemented with 18.52 mg/L 
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insulin, 7 mg/L glucagon, 7.5 mg/L hydrocortisone, 40 mg/L L-proline, 50 mg/L gentamicin , 

2.5 mg/L Fungizone, 10% fetal bovine serum and 10 ng/ml EGF [80] and it was changed every 

day.  The collagen gel sandwich configuration system was the control for all experiments in this 

work.  

 

4.2.4 Hepatocyte Membrane Polarization Assessment via Immunofluorescnece 

 Connexin 32 is a gap junction protein expressed in polarized hepatocytes that plays 

important role in regulating signal transfer and growth control in the liver by constructing gap 

junction channels and gap junctional intercellular communication [81]. ZO-1 is a tight junction 

protein that is expressed in the plasma membrane of polarized epithelial cells and plays an 

important role in sealing together the perimeters of polarized membrane and provides the 

paracellular barrier necessary to maintain absorption, secretion, and transport [82]. The bile 

canaliculi can be fluorescently labeled by using CellTracker™ Green CMFDA Dye; 5-

chloromethylfluorescein diacetate (CMFDA) is a fluorescent dye that stays in the cell cytosol 

when hepatocytes are non-polarized and lack the canaliculi network, and is excreted into the bile 

canaliculi network when it is formed by the polarized hepatocytes [83]. 

Hepatocytes in collagen gel sandwich were fixed with 10% formaldehyde, washed with 

cold FBS three times and then incubated with 1% BSA/PBS w/v blocking solution at 4°C 

overnight. Cultures were then incubated with primary antibody; either rabbit anti-Connexin 32 

reactive for rat CX 32 or ZO-1 rabbit polyclonal antibody used as manufacturer directions. The 

primary antibodies were washed away and a FITC-conjugated secondary antibody solution in 

added and cultures were incubated overnight at 4°C. DAPI solution was added for nuclei staining 

in blue color.  
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CellTracker™ Green CMFDA Dye was applied following the manufacturer directions. 

Briefly, the dye powder was dissolved in DMSO to make 10 mM stock solution then diluted with 

serum free culture medium to make 25µM working solution. The hepatocytes in cell suspension 

were incubated with pre-warmed working solution for 30 minutes in 15 ml centrifuge tube, 

centrifuged at 300 rpm for 5 minutes, resuspended with fresh pre-warmed medium, and finally 

seeded into the pre-coated culture dish with collagen gel. 

Fluorescent images were taken using the phase contrast microscope and Nikon digital 

camera. 

 

4.2.5 Hepatocyte Metabolic Functions Assays (Albumin and Urea Secretion)  

Metabolic performance of cultured hepatocytes was evaluated by measuring: (1) the rate 

of albumin secretion via Enzyme-linked immunosorbent assay (ELISA) using antibody specific 

to rat albumin and (2) the rate of urea secretion using diacetyl- monoxime colorimetric method 

described by Rozet et al. [84] and. Sample collection and medium change was performed every 

day for the whole period of cultures. These assays were performed in every experiment done in 

this whole work.  

 

4.2.6 Bulb-Shape Scaffold Fabrication, Cell Seeding and Cell Distribution Evaluation 

 Chitosan (1.5 wt% medium molecular weight 90% deacetylated) was dissolved in 0.2 

molar acetic acid. Then liquid Nitrogen was perfused through a hollow stainless steel rod and 

immersed in the chitosan solution (Fig. 10). This allowed the chitosan solution to freeze from the 

inside towards the outside resulting in radially oriented pores with pore size of 20-50µm at the 
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center and 500-800µm at the periphery.  After freezing, the scaffold was lyophilized, neutralized 

with 5% ammonia solution and then washed several times with phosphate buffer saline (PBS). 

 

Figure 10: Scaffold fabrication. Schematic diagram of the scaffold fabrication setup. 

 

To have an idea about how the cells were distributed inside the new scaffold 

microstructure; fixed hepatocytes (in 10% formaldehyde solution) were seeded at a density of 3 

million cells /ml using bioreactor setup (Fig. 11) with a peristaltic roller pump at a flow rate of 2 

ml/min. As pores at the periphery were larger and got smaller towards the center, the direction of 

flow was adjusted to be from the outside towards the center, where the cell suspension was 

drawn into the inside of the scaffold core. The seeded scaffolds were then processed for 

histology. Briefly, seeded scaffolds were fixed with 10% formaldehyde, dehydrated through a 

series of graded alcohols (starting with 70% and finishing with 100%), cleared with Xylene 

(three washes with final one lasts for 24 hrs), and embedded in liquid paraffin under vacuum. 
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Eight micrometer thickness sections were obtained using the microtome, deparaffinized with 

Xylene, and rehydrated through a series of graded alcohol (starting at 100% and finishing with 

70%). Hematoxylin and Eosin stain (H&E) was applied to get an insight of cell distribution and 

tissue structure using phase contrast microscopy and capturing digital color images with Nikon 

digital camera.  

 

Figure 11:  Perfusion Bioreactor System. 

 

4.2.7 Surface Freezing and Central Freezing Scaffolds Fabrication, Cell Seeding and Cell 

Distribution Evaluation 

The old design (surface freezing method)  used in our group previously was obtained by 

filling chitosan solution in annular stainless steel mold and immersing it in isopropanol/dry ice 

bath allowing the inward radial growth of ice crystals from the surface into the central port (Fig. 

12). The new proposed design (central freezing method) was made by filling chitosan solution in 

the same annular stainless steel mold and then started freezing by perfusing liquid nitrogen 

through the central channel. This technique allowed the outward radial growth of ice crystals 
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from the rod into the solution (Fig. 12). The frozen masses were then lyophilized to remove all 

water crystals leaving behind a network of interconnected microchannels. All scaffolds were 

derivatized with pre-activated heparin with EDC for 24 hrs, washed three times with PBS to 

remove excess heparin and incubated with FBS for 24 hrs prior to cells seeding to maximize 

protein attachment adsorption on the pores’ surfaces. All washing steps were carried out in the 

bioreactor system at flow rate of 5 ml/min. 

 

Figure 12: Schematic diagram illustrating the fabrication method for the two scaffold’s designs 

 

To estimate the seeding efficiency, the two designs then were seeded with the same cell 

concentration (5 million cells /ml) as illustrated in Fig. 13. The surface frozen scaffold had the 

flow directed from central port outwards the periphery and the central frozen scaffold had the 

flow directed from outside towards the central port. Hepatocyte distribution inside the pores and 

scaffold loading efficacy were examined by histology methods. The cell concentration used was 

5 million cells /ml according to the results of our previous studies [35]. The results showed that 

higher total cell number with lower seeding concentration yielded higher retention of cells with 

more homogenous distribution inside the scaffold (i.e. 180 million cells at 5 million cells/ ml). 
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Seeding time was set to 2 hours and the seeding efficiency was calculated by counting the 

leftover cells that were not seeded during that time. Digital images from histology sections were 

extrapolated using ImageJ® software to calculate the seeding efficiency based on the number of 

cells counted in each image, the average volume per photo, and the total volume of the scaffold. 

 

 

Figure 13: Bioreactor setup for seeding hepatocytes into the scaffolds. Schematic diagram illustrating 
seeding methods for the two scaffold’s designs; (A) surface frozen, and (B) central frozen scaffolds. 

 

4.2.8 Volumetric Flow Rate Calculations 

The volumetric flow rate was calculated based on the physiological shear stress and 

cross-sectional area available for flow for the empty pores for each design. A single pore was 

assumed to be cylindrically shaped; for the surface frozen scaffold there were two different 

layers of pore sizes; at outer surface and at inner surface. For the central frozen scaffold there 

were three layers (Fig. 14). 

A B 
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Figure 14: Pores architectures and dimensions. Schematic diagram illustrating the dimensions of all pores 
in all layers for the two scaffold’s designs. 

 

Physiological shear stress ranges between 0.5 Pa (at the sinusoids) up to 2 Pa (5 to 20 

dyne/cm2) [85]. By choosing the lowest value τ = 5 dyne/cm2 and applying equation of continuity 

for a cylinder, the volumetric flow rate in a single pore can be calculated using the following 

formula: 

� = 6. �. ��
�. 	. 
�  

Where; 

• l : is the length of a given zone. 

• r : is the radius of a pore in a given zone. 

• µ : is the viscosity of the blood (~water) =10 dyne.sec/cm2. 

• V
•

 : is the volumetric flow rate (cm3/min). 

And the total number of pores at each layer can be calculated using the following: 

���	 # � �
�� = 2. �. �. �
�. 
�  
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Where; 

• L : is the length of the scaffold ( 1.0 cm). 

• R : is the radius of the scaffold at a given zone. 

The volumetric flow rate for the surface frozen scaffold was calculated to be 1.8 ml/min for 

the outer layer and 5.67 ml/min for the inner layer. And for the central frozen scaffold it was 

1.2 ml/min for the outer layer, 6.0 ml/min for the middle layer and 0.05 ml/min for the inner 

layer.  

However, and based on oxygen requirements uptake for hepatocytes, the flow rate was 

calculated using the basic mass transport equation [3, 86, 87]: 

� = ���� − ���  ! "# $ 

Where; 

• V  : is max. O2 uptake = 0.38 nmol/s/106 cells. 

• k : is the solubility of oxygen in saline under 21% O2 and atmospheric  pressure = 1.19  

nmol/mL/mmHg. 

• Pi  : is the measured partial pressure (mmHg) of oxygen in the inlet stream  of the bioreactor. 

• Po : is the measured partial pressure (mmHg) of oxygen in the outlet stream  of the bioreactor.  

• n  : is the number of cells entrapped in the scaffold (100 million cells). 

• Q : is the volumetric flow rate (ml/min). 

If Pi was set to be 158 mmHg (partial pressure of O2 at atmospheric pressure) and Po was 

considered to be the typical physiological oxygen partial pressure found in the perivenous zone 

(25–35 mmHg) [3], then the flow rate should be adjusted to 14.4 ml/min for future cultures to 
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meet the oxygen requirements uptake for hepatocytes and hence they don’t suffer from hypoxia 

inside the scaffolds. 

 

4.3 Results 

4.3.1 Hepatocyte Morphology and Metabolic Functions in the Collagen Gel Sandwich 

Configuration  

The hepatocytes formed a monolayer with a well-connected cellular network and bile 

canaliculi formation between adjacent cells as seen under the phase contrast microscope (Fig. 15) 

and when Green CMFDA CellTracker™ dye was used (Fig. 16). They expressed the gap 

junction protein connexin 32 (Fig. 17) and the tight junction protein ZO-1 (Fig. 18); which 

indicated that they were able to reconstruct the plasma membrane polarity in this configuration. 

 

Figure 15: Phase contrast images for hepatocyte in collagen gel sandwich configuration culture. 
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Figure 16: Green CMFDA CellTracker™ labeling. Fluorescent image of hepatocytes in collagen gel 
sandwich system labeled with Green CMFDA CellTracker™ dye illustrating the formation of bile 
canaliculi. 

 

 

 

Figure 17: Gap junction Connexin32 labeling. Fluorescence image of hepatocytes in collagen gel 
sandwich system labeled with anti-Connexin32 - FITC conjugated (green) illustrating the formation of 
gap junctions between adjacent cells. 
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Figure 18: Tight junction ZO-1 labeling.  Fluorescent image of hepatocytes in collagen gel sandwich 
system labeled with anti-ZO-1- FITC conjugated (green) illustrating the formation of tight junctions the 
membranes of some cells. 

 

Hepatocytes were able to synthesize albumin (Fig. 19A) and secrete urea (Fig. 19B) in 

levels that match the reported ones in literature for the collagen gel sandwich static cultures [28]. 
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Figure 19: Metabolic assays of hepatocytes in collagen gel configuartion. (A) Albumin secretion for 
hepatocyte culture in collagen gel sandwich configuration. (B) Urea secretion for the same cultures. 
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4.3.2 Bulb-Shape Chitosan Scaffold Microstructure and Seeding Efficiency  

Scanning electron microscopy was performed to evaluate the pore size of the new 

proposed design and the microstructure architecture (Fig. 20). The pores were tapered- radially 

oriented with larger diameters at the outer surface (D outer= 152.905 ±27.101µm), and small ones 

at the inner surface (Dinner= 49.173 ± 11.071µm) as evaluated using SigmaScan Pro® software. 

 

Figure 20: Scanning electron microscopy images for the bulb-shape scaffold. (A) Periphery of the 
scaffold (outer pores, view #3), (B) digital image of the actual scaffold where the numbers and connecting 
lines represent cut sections of the scaffold and the white arrows represent directions of view, (C) inner 
surface of the scaffold at central port (inner pores, view #2), and (D) cross sectional view of the scaffold 
showing the radially oriented pores (large at periphery and smaller at center, view #1). 

  

The size of the scaffold can be controlled by controlling the time of liquid nitrogen 

perfusion. The desired size was estimated to be around 1.5 cm in diameter and 1.0 cm in length. 

A C 

D 

B 

Central port 

Periphery 
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This size was chosen as a reasonable one for transplanting the target cell quantity (100 million 

hepatocytes ~10% of rat liver mass) into the peritoneal cavity of a rat weighing approximately 

300 grams for in vivo studies.  This number of hepatocytes was chosen based on the fact that a 

rat of these species needs 12% to 23% of the whole liver mass to stabilize metabolic diseases 

[76]. The seeded cells were more in number at the center of the scaffold compared to the 

peripheries, but it seems that the central pores were blocked as seen in the histology images (Fig. 

21). 

One big challenge was encountered  in this new design; the scaffold was collapsing due 

to pressure drop inside the pores and central port during seeding. This maybe because the pores 

were not successfully evacuated from air before starting seeding or they were blocked. 

Modification to the fabrication method was applied; before immersing the metal rod in the 

chitosan solution, liquid nitrogen was allowed to perfuse for few minutes to start the ice crystal 

formation. This step was important to prevent the formation of thin sheet of chitosan around the 

central port; which causes the pores to be closed at that site. However, this modification did not 

yield successful results as expected as the collapsing issue was not resolved.  

 

 

Figure 21:  H&E histology images of seeded scaffold. The images show the cells condensed in the center 
[C] and less at peripheries [P]. It also seems that the central pores were sealed with a thin layer of 
material. 

P P 
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4.3.3 Comparison between Two Scaffold Designs: Surface Freezing or Central Freezing 

The directional freezing and lyophilization technique created highly porous structures 

with tapered, radially-oriented pores (Fig. 22) with bigger pore diameter at the central port 

(Dinner= 118.15 ± 55.27µm) and smaller pore diameter at the outer surface (D outer= 21.35 ± 

6.41µm) for the surface freezing method. For the central freezing methods the pores have larger 

diameters at the middle (D middle= 201.53 ±50.62µm), medium diameters at the outer surface (D 

outer= 58.42 ± 14.14µm), and small ones at the inner surface (Dinner= 16.89 ± 7.71µm) as 

estimated from the SEM images and using ImageJ® software.  

 

Figure 22: SEM images of two designs. The images show tapered, radially-oriented pores in both 
fabrication methods 

 

The total volume of the surface frozen scaffold was 1.77 cm3 and for the central frozen 

scaffold was 1.48 cm3. The seeding efficiency for the surface frozen scaffold was about 78%, 

with a cell density of 44.1 X 106/ cm3. The seeding efficiency for the central frozen was about 

65%, with a cell density of 43.9 X 106/ cm3. The predicted seeding efficiency using ImageJ® 

software for the surface frozen scaffold was 99% and 68% for the central frozen one. The 
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targeted number of total cells to be loaded to the scaffold was 100 million cells (~10% of rat 

liver mass).   

Histology images showed that the cells were distributed all along the cross sectional area 

in the surface frozen scaffold (Fig. 23A), while in the central frozen scaffold many pores were 

empty with cells more condensed at the center (Fig. 23B). 

 

 

Figure 23:  H&E staining images of cross sectional areas for seeded scaffolds. (A) Surface frozen 
scaffold. (B) Central frozen scaffold. 

A 

B 
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In yet another modification to the fabrication method to prevent scaffold collapse in the 

central-freezing method, we adapted the following changes: (1) placing annealed chitosan fibers 

(as they have high mechanical strength properties) at the center port to keep it open and (2) 

placing a supportive nylon mesh at the center port. Despite this, the collapsing issue remained 

unresolved as indicated by the collapse of the scaffold in radial direction, instead of axial. 

Support to individual pores was needed to reinforce the whole scaffold, which might not be a 

feasible option. 

 

4.3.4 Metabolic Functions for Hepatocytes in the Surface Freezing Scaffold 

In view of the challenges encountered in the central frozen design, the surface frozen 

design was adapted for the all experiments hereafter in this project.  

The chosen 1.8 ml/min flow rate was not sufficient to pull up the cells and circulate them,  

so the seeding flow rate was changed to 5.6 ml/min. But after seeding, the flow rate was set back 

to the 1.8 ml/min and the culture was run for five days. Scaffold cultured hepatocytes 

synthesized albumin (Fig. 24A) and secreted urea (Fig. 24B) but at depressed rates compared to 

hepatocytes in collagen-sandwich dish cultures, and rates declined with time.  

  

Figure 24: Metabolic functions for scaffold cultured hepatocyte in the surface frozen scaffold at 5.6 
ml/min seeding flow rate and 1.8 ml/min culturing flow rate. (A) Albumin synthesis rate. (B) Urea 

secretion rate. 
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4.4 Discussion 

 To successfully design a three dimensional bioartifical liver, one should take into 

consideration the cell source and the design of the three dimensional scaffold that will create 

suitable environment for cells to attach and function. The challenges in the field of bioreactor 

designs for 3D perfusion cultures are focused on the need to provide an appropriate scaffold for 

tissue morphogenesis. The scaffold design must ensure relatively homogeneous distribution of 

flow and mass transfer throughout the system. This was important in order to meet the metabolic 

demands of the cells, as well as the physiological shear forces generated by such flow. In order 

to achieve the desired cellular structure, hepatocytes must attach preferentially within the 

pores/microchannels with sufficient strength to withstand both tissue remodeling forces and fluid 

shear stress forces generated by in the perfusion system [88, 89]. 

Powers et al [89] suggests that in order to design a sufficient reactor perfusion systems; 

tissue formation and cell behavior should not depend on the spatial arrangement or location of 

channels within the microstructure of a given system. In addition, the system should approximate 

the architectural properties and the perfusion conditions present in the natural hepatic tissue.  

Here, we describe the design, fabrication methods, and flow rates calculations for 

chitosan-heparin scaffolds. The scaffolds were highly porous with tapered, radially-oriented 

pores and the pores architectures and dimensions can be controlled by controlling the freezing 

direction to meet a desired design for a specific system. The microstructure of these highly-

porous scaffolds provides large surfaces for cells to attach as well as facilitating nutrient and 

oxygen transportation. 

The flow rate of culture medium in the bioreactor was chosen to provide a physiological 

range of fluid shear stresses within the pore geometry for the surface frozen scaffold design. 

However, calculations based on hepatocyte oxygen uptake rates suggested that the operating 
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flow rate (1.8 ml/min) was insufficient to meet hepatocyte oxygen requirements. In addition, 

seeding with single cell suspensions may have resulted in uncontrolled cell aggregation and poor 

oxygen and nutrient diffusion within the cell mass. 

When Li et al [26] cultured primary rat hepatocyte into chitosan-alginate and chitosan-

heparin porous scaffolds, they didn’t expose the cells to any kind of flow and the hepatocytes  

synthesized albumin and secreted urea at higher levels than hepatocytes in monolayer 

configuration. This suggests that in our system, hepatocytes were exposed to high shear forces 

that may have lead to cell death.  

 

4.5 Conclusions and Future Work 

• With regards to central frozen scaffolds; many issues remain unsolved regarding scaffold 

collapsing due to pressure drop in the pores during seeding process, so we adapted the 

surface freezing method.  

• Seeding efficiency for surface frozen scaffold was higher than central frozen. 

• Operating at flow rate of 1.8 ml/min was insufficient to meet hepatocyte oxygen 

requirements in the surface frozen design. 

• Seeding with single cell suspensions may have resulted in uncontrolled cell aggregation 

and poor oxygen and nutrient diffusion within the cell mass. 

• Modifications to the perfusion system can be made to maintain the hepatic specific 

functions in vitro; i.e. co-culture with non-parenchymal cells and encapsulation of growth 

factors into the scaffold.  
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CHAPTER FIVE 

THE EFFECTS OF CELL SEEDING ARCHITECTURE ON HEPATOCYTE 

DISTRIBUTION AND VIABILITY IN CHITOSAN/HEPARIN SCAFFOLDS 

 

5.1 Introduction 

In vitro assembly of functional liver tissue is needed to enable the transplantation of 

tissue-engineered organs. In addition, there is an increasing demand for in vitro models that 

replicate complex events occurring in the liver. It has been shown that hepatocytes in perfused 

porous scaffolds can produce an environment that mimics the hepatic sinusoid with high mass 

transport capacities [25]. Single cell suspensions of hepatocytes may not offer the appropriate 

cell-cell interaction that is necessary to maintain hepatocyte survival and maintenance of 

differentiated state. If seeded on non-adherent surface (or in 3D environment), hepatocytes will 

spontaneously aggregate into spheroids that may exceed 400μm in diameter and hence develop 

necrotic center. The advantages of culturing primary hepatocytes as spheroids can be 

summarized as follows:  (1) maintain the structural polarity of cells, (2) maintain the functional 

bile canaliculi formation, and (3) maintain the differentiated functions of the hepatocytes. 

Therefore, hepatocyte spheroids are expected to create an efficient 3D tissue models for hepatic 

studies in vitro and can be used as the cell source in  many therapeutic, diagnostic and discovery 

applications as in case of developing bioartificial liver [90]. 

In the present study, we compared two seeding architectures; single cell suspension and pre-

formed spheroids that aimed to promote cell seeding efficiency by effectively entrapping 100 

million cells (~10% of a rat liver). Hence, spheroid size can be controlled to produce spheroids 

of ~100μm in diameter (which will not develop necrotic center [91]) and then used those to seed 
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the scaffold. It was shown previously that hepatocytes in aggregates can maintain viability and 

functional integrity for months [92, 93]. 

 

5.2 Experimental Work 

5.2.1 Materials  

Lactate Dehydrogenase Activity (LDH) Kit was purchased from Sigma-Aldrich (St. 

Louis, MO). AlamarBlue® Cell Viability Reagent was purchased from Invitrogen (by Thermo 

Fisher Scientific Inc.). All other chemicals and solvents were of analytical reagent grade. 

 

5.2.2 Seeding with Single Cell Suspension  

The bioreactor setup, illustrated in figure 16 from previous chapter, was used to seed the 

scaffolds with cell suspension (and later to perfuse the culture medium) using different seeding 

setups. The target number of hepatocytes to be seeded was 100 million per one scaffold. Based 

on the previous analysis and calculations, three seeding setups were performed to evaluate the 

effects of seeding flow rate and culturing flow rate on hepatocytes metabolic performance and 

neo-tissue formation and organization.  

1. Setup #1: Circulating seeding at 37°C for 2 hours at flow rate of 5 ml/min and culture at 

10 ml/min. 

2. Setup #2: Circulating seeding at 37°C for 2 hours at flow rate of 20 ml/min and culture at 

15 ml/min. 

3. Setup #3: Repeated single-pass seeding at 4°C at flow rate of 20 ml/min and culture at 15 

ml/min.  
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5.2.3 Seeding with Pre-Formed Aggregates 

Aggregates of primary hepatocytes were formed based on the intermittent settling 

/agitation protocol described by Surapaneni et al. [94]. Briefly, 39 million hepatocytes were 

suspended in 12 ml of hepatocyte culture medium and seeded into 75 cm2 culture flask (seeding 

density of 520,000 cells/ cm2). The flasks were pre-coated with 10 ml of 2% bovine serum 

albumin (BSA) in phosphate buffered saline (PBS) for at least 24 hrs prior to aggregation at 

37°C. The flasks were then placed on a timed controlled linear shaker inside the incubator; 15 

sec of mixing at 20 min intervals for 6 hours. This procedure produces spheroids of around 

100µm in diameter as this size will not develop necrotic center. One hundred million cells were 

used to form the aggregates and then seeded into the scaffold as described above using the same 

three setups in the single cell suspension seeding. 

  

5.2.4 Aggregation Efficiency Analysis and Aggregates Viability 

Before seeding the scaffolds, samples of the aggregates were collected at three different 

time point; 2 hours, 4 hours and 6 hours and fixed with 10% paraformaldehyde in PBS to 

characterize the aggregation efficiency and the aggregates sizes. Images using phase contrast 

microscopy were captured and analyzed using ImageJ® software. The software calculated the 

areas of the particles (spheroids) in each image. From the areas, the volumes of the spheroids 

were calculated and divided by the volume of a single hepatocyte with an average diameter of 

20μm and considered to have a sphere shape (4188X10-6m3) to calculate how many cells were 

available in each spheroid. SigmaPlot® software was then used to generate histograms of number 

of cells in the spheroids vs. the spheroid count of that amount of cells in. From the histograms, 

the aggregation efficiency can be estimated at each time point. 
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 To evaluate the viability of the spheroids, Trypan blue exclusion test was performed on 

the samples collected (before fixing them) and images were captured with Nikon® color digital 

camera. At least ten images were captured for each time point and the viability was evaluated by 

counting blue cells and clear cells. 

 

5.2.5 Histology Processing and Hematoxylin & Eosin Staining  

To evaluate cell distribution within the scaffolds’ microstructure, scaffolds were fixed in 

10% paraformaldehyde in PBS for 48 hrs and then processed for histology by embedding in 

paraffin and cut into semi-thin transverse sections (8 µm) with a microtome. Then the sections 

were washed with xylene to remove the paraffin. After that, Hematoxylin & Eosin stain (H&E) 

was applied to distinguish cells from tissue structures using light microscopy. The distribution of 

cells in the pores was analyzed using the transverse sections by quantitative image analysis of 

digital light microscopy images.  

 

5.2.6 Lactate Dehydrogenase Activity Assay  

The LDH kit is commercially available from Sigma. The following description for the kit 

is quoted from Sigma website: “Lactate dehydrogenase (LDH) is an oxidoreductase enzyme that 

catalyzes the interconversion of pyruvate and lactate. Cells release LDH into the bloodstream 

after tissue damage or red blood cell hemolysis. Since LDH is a fairly stable enzyme, it has been 

widely used to evaluate the presence of damage and toxicity of tissue and cells. LDH is also 

elevated in certain pathological conditions such as cancer. Quantification of LDH has a broad 

range of applications. The LDH Activity Assay kit quantifies LDH activity in variety of 
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biological samples. The assay is quick, convenient, and sensitive. In this kit, LDH reduces NAD 

to NADH, which is specifically detected by colorimetric (450 nm) assay”[95]. 

 

5.2.7 AlamarBlue Viability Assay  

AlamarBlue® is a proven cell viability indicator that uses the natural reducing power of 

living cells to convert resazurin to the fluorescent molecule, resorufin. The active ingredient of 

alamarBlue® (resazurin) is a nontoxic, cell permeable compound that is blue in color and 

virtually nonfluorescent.  Upon entering cells, resazurin is reduced to resorufin, which produces 

very bright red fluorescence that is measured by a fluorescence spectrophotometer using 

excitation wavelength of 560nm and emission wavelength of 590nm. Viable cells continuously 

convert resazurin to resorufin, thereby generating a quantitative measure of viability and 

cytotoxicity [96].  

 

5.3 Results 

5.3.1 Aggregation Efficiency and Aggregates Viability 

Hepatocyte aggregates sizes increased as the time progressed. After six hours of 

aggregation time, spheroids sizes started to grow bigger than the desired size (>100μm). Most of 

spheroids had less than 25 cells after two hours of aggregation (Fig. 25A), between 25- 50 

cells/spheroid after four hours (Fig. 25B), and between 25- 100 cells/spheroid after six hours 

(Fig. 25C). The viability of spheroids was about 70% as tested by Trypan Blue exclusion 

viability test (Fig. 25D).  
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Figure 25: Aggregation efficiency and viability. Histograms for aggregation efficiency after (A) two 
hours, (B) four hours, and (C) six hours. (D) Digital color image of TrypanBlue cell health indicator 
showing live cells/aggregates in clear color and dead cells/aggregates in blue color (viability ~70%). 

 

5.3.2 Hepatocyte Metabolic Functions and Viability at Different Seeding/Culturing Flow 

Rates and Temperatures 

For setup #1 (circulating seeding at 37°C for 2 hours at flow rate of 5 ml/min and culture 

at 10 ml/min) the observations are summarized in Table 3.  

 Single Cell Suspension  Pre-Formed Spheroid  

Seeding Efficiency  70% (39.55 X 106 cells/cm3) 85% (48 X 106 cells/cm3) 

Viability (LDH activity)  More stressed  Less stressed  

Cell distribution within the 

microstructure  

Homogeneously distributed all 
over the cross section 

At Center  

Aggregates size at the end of 

culture  

Not much aggregates noticed 
(mostly single cells)  

200-500µm 

 

Table 3: Summary of observations for setup #1: seeding flow rate 5 ml/min and culture at 10 ml/min at 37°C. 

 

A B 

C 
D 
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Hepatocytes in both seeding architectures didn’t synthesize albumin for the whole period 

of culture (Fig. 26). On the other hand, they were able to secrete urea (Fig. 26B) but at depressed 

rates compared to the static collagen gel sandwich configuration; with no significant difference 

between the two seeding architectures. LDH activity (Fig. 26C) was very high for scaffolds 

seeded with cell suspension compared to those seeded with pre-formed aggregates.  

Histology images showed that most of the cells remained as single cells when scaffolds 

were seeded with single cells suspension at these flow rates (Fig. 27A), while cells remained in 

aggregates and the aggregates increased in size (up to 500 µm) from the seeding size (100 µm) 

which suggests that the spheroids fused together inside the pores. It was noticed that cells were 

homogeneously distributed all over the cross section of the scaffold when cells were seeded as 

single cell suspension, while they were concentrated at the center of the scaffold in the case of 

seeding with pre-formed spheroids (Fig. 27B). However, a number of spheroids were lost during 

the histology processing and were difficult to locate. In addition, more nucleoli were stained with 

Hematoxylin in the pre-formed seeded scaffolds; which suggests they were viable at the fixation 

time (Fig. 27A&B).  
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Figure 26: Metabolic performance and viability of perfused, scaffold-seeded hepatocytes (A) albumin 
secretion, (B) urea secretion and (C) LDH activity at seeding flow rate of 5 ml/min and culture flow rate 
of 10 ml/min at 37°C. 

 

  

Figure 27:  H&E histology images of cross sectional areas for seeded scaffolds with (A) single cell 
suspension and (B) pre-formed spheroids. 
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From setup #2 we can conclude that seeding at flow rate of 5 ml/min and culturing at 10 

ml/min were not sufficient to seed spheroids homogenously. In addition, culturing at 10 ml/min 

didn’t provide the needed oxygenation. 

For setup #2 (circulating seeding at 37°C for 2 hours at flow rate of 20 ml/min  and 

culture at 15 ml/min at 37°C) the observations are summarized in Table 4. 

 Single Cell Suspension  Pre-Formed Spheroid  

Seeding Efficiency  70%  (39.55 X 106 cells/cm3) 70% (39.55 X 106 cells/cm3) 

Viability (LDH activity)  More stressed  Very stressed ( like cells in 
suspension)  

Cell distribution within the 

microstructure  

All along cross section  All along cross section 

Aggregates size at the end of 

culture  

40-300µm 
Mostly single cells, fewer 
aggregates 

40 -300 µm 
Many single cells, mostly small 
aggregates (70-100µm)  

Table 4: Summary of observations for setup #2: seeding flow rate 20 ml/min and culture at 15 ml/min at 37°C. 
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Figure 28: Metabolic performance of perfused, scaffold-seeded hepatocytes (A) albumin, (B) urea 
secretion and (C) LDH activity at seeding flow rate of 20 ml/min and culture flow rate of 15 ml/min 
seeding at 37°C. 

 

Hepatocytes in both seeding architectures didn’t synthesize albumin for the whole period 

of culture (Fig. 28A). On the other hand, they were able to secrete urea but at depressed rates 

compared to the static collagen gel sandwich configuration; with no significant difference 

between the two seeding architectures (Fig. 28B). It was noticed that the urea secretion rates at 

these flow rates were higher than the ones from setup#1; where they fluctuated between two and 

zero while at setup#2 they stayed above zero. LDH activity was very high for both seeding 

architectures at these flow rates and seeding temperature of 37°C (Fig. 28C).  

Albumin Synthesis

Day in Culture

0 2 4 6 8 10 12

R
a

te
 (

u
g

/h
r/

m
il

li
o

n
 c

e
ll

s
)

0

1

2

3

4

5

6

Double gel  

Scaffold with Cell Suspension 

Scaffold with Spheroids 

Urea Secretion

Day in Culture

0 2 4 6 8 10 12

R
a

te
 (
u

g
/h

r/
m

il
li
o

n
 c

e
ll
s
)

0

2

4

6

8

Double gel  

Scaffold with Cell Suspension 

Scaffold with Spheroids 

LDH Activity

Day in Culture

0 2 4 6 8 10 12

L
D

H
 a

c
ti

v
it

y
 (

n
m

o
le

/m
in

/m
il

li
o

n
 c

e
ll

s
)

0

500

1000

1500

2000

2500

Double gel 

Scaffold with Cell Suspension  

Scaffold with Spheroids 

A B 

C 



www.manaraa.com

60 
 

 

From histology images, we noticed that the cells were homogeneously distributed all 

along the cross sectional area in both seeding architectures (Fig. 29A&B). In the single cell 

suspension seeding, cells remained mostly as single cells with very few aggregates of sizes 40-

300µm; the spheroids were seen attached at the walls of the pores by SEM (Fig. 30A). In the 

case of pre-formed spheroids, some single cells were present but mostly there were small 

aggregates (70-100µm) and some bigger aggregates (300µm) also seen attached and spread at the 

walls of the pores (Fig. 30B). The nucleoli didn’t stain with hematoxylin which suggests that 

most of the cells were dead at the end of the culture.  

It is to be noted that in SEM photos the spheroids had rough surfaces with a lot of 

materials around the cells. These materials might be cell debris from previously dead and 

deteriorated cells; we can notice such debris in the histology images as well. 

 

 

Figure 29:  H&E histology images of cross sectional areas for seeded scaffolds with (A) single cell 
suspension and (B) pre-formed spheroids. 

 

A B 
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Figure 30:  SEM photos of cross sectional areas for seeded scaffolds with (A) single cell suspension with 
some small aggregates attached to the wall, and (B) pre-formed spheroids with bigger aggregates also 
attached and spread at the walls. 

A 

B 
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From setup #2 we can conclude that seeding at 37°C may have contributed to hepatocyte 

death as their metabolic rate was high at this temperature. While seeding at flow rate of 20 

ml/min was sufficient to seed both single cells suspension and spheroids homogenously, it may 

have generated shear forces that were higher than the levels that hepatocytes can tolerate. 

For setup #3 (repeated single-pass seeding at 4°C at flow rate of 20 ml/min and culture at 

15 ml/min) the observations are summarized in Table 5. 

 Single Cell Suspension  Pre-Formed Spheroid  

Seeding Efficiency  88%  (49.7 X 106 cells/cm3) 92% (52 X 106 cells/cm3) 

Viability (nuclei staining with 

Hematoxylin)  

~50%  ~10%  

Viability (LDH activity)  More stressed  Less stressed  

Cell distribution within the 

microstructure  

All along cross section  Can’t be seen (all were at the 
seeding port and got lost 
during histology processing)  

Aggregates size at the end of 

culture  

Big aggregates filling up the 
pores. 

Many single cells but mostly 
aggregates of sizes 50 -200 
µm.  

Table 5: Summary of observations for setup #3: repeated single-pass seeding at 4°C at flow rate of 20 ml/min and 
culture at 15 ml/min. 

 
Hepatocytes seeded as a single cell suspension and cultured at flow rates of 15 ml/min 

exhibited higher rates of albumin (Fig. 31A) and urea secretion (Fig. 31B) during the 12-day 

culture period than hepatocytes seeded as pre-formed aggregates. The albumin rates were at 

depressed rates compared to hepatocytes in control collagen-sandwich dish cultures but the urea 

secretion rates were close to the control. LDH activity (Fig. 31C) was low for both seeding 

architectures at seeding temperature of 4°C compared to the cells cultured in control collagen gel 

sandwich configuration. 
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Figure 31: Metabolic performance of perfused, scaffold-seeded hepatocytes (A) albumin synthesis, (B) 
urea secretion and (C) LDH activity at seeding flow rate of 20 ml/min and culture flow rate of 15 ml/min 
(seeding at 4°C) 

 

AlamarBlue® cell health indicator assay (Fig. 32) shows that hepatocytes in the scaffold 

seeded with pre-formed spheroids had very low activity, while those in the scaffold seeded with 

single cell suspension had higher activity but still lower than the activity of cells in collagen gel 

sandwich configuration or the static culture of pre-formed spheroids on chitosan-heparin 

membranes. 
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Figure 32: AlamarBlue® cell health indicator assay on day 11 of culture of hepatocyte in perfusion 
cultures of suspension-seeded and pre-formed spheroid-seeded, hepatocytes in static collagen gel 
sandwich configuration and preformed spheroids on chitosan-heparin membrane. 

 

Histology sections showed that cells were distributed all along the pores in scaffold 

seeded with single cell suspension (Fig. 33A). They were more concentrated at the central port of 

the scaffold in the pre-formed aggregate seeding architecture (Fig. 33B and Fig. 34). It can be 

noticed from the SEM photos (Fig. 35) that the aggregates were concentrated at the central port 

forming one large aggregate. Also, cells were spread and attached to the walls of the pores and 

blocking some of the central pores. 

From setup #3 we can conclude that a flow rate of 20 ml/min was adequate for seeding a 

cell suspension, it was too low to efficiently seed spheroids into the scaffolds. The spheroids 
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R
e
d

u
c
ti

o
n

 R
a
te

 

( δδ δδ
 I

n
te

n
s
it

y
/h

r.
m

il
li

o
n

 c
e
ll

s
)

0

10

20

30

40 Collagen Gel 

 
Cell suspension 

 
Spheroids

 
Spheroid Chitosan/Heparin membrane

 



www.manaraa.com

65 
 

 

aggregation, diffusion limitations, and cell death. Seeding flow rate of 20 ml/min and culturing at 

15 ml/min may have resulted in hepatocyte damage and death due to high shear stress forces. 

Figure 33:  H&E histology images of seeded scaffolds with (A) single cell suspension (cross section) and 
(B) pre-formed spheroids (longitudinal section). 

 

Figure 34:  H&E histology images of a longitudinal section of scaffold seeded with pre-formed 
spheroids. Notice the large aggregates filling the central port.  

A B 
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Figure 35:  SEM photos of a longitudinal section at the center port of scaffold seeded with pre-formed 
spheroids showing cells forming large aggregates and blocking the center pores. 

 

5.4 Discussion 

Hepatocytes will spontaneously aggregate into spheroids if seeded on non-adherent 

surface or in 3D environment. The distribution of oxygen and metabolites in these organoids will 

become critical issue as they are transported by means of diffusion that depends on cells uptake 

and consumption of these elements, and their excretion to other elements. Hence, the size of 

these spheroids should be controlled as large ones will have diffusional gradients that will limit 

the supply of sufficient nutrients and the removal of waste at the heart of aggregates and thus the 

cells at the center will eventually die [91]. In this work, we sought to control the size of the 

aggregates by forming them first at the desired size that will not develop necrotic center and then 

seed them to the limited-adhesion material in 3D environment. 
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From the experiments performed in this work, we found that the higher the flow rate of 

seeding, the better the seeding efficiency. On the other hand, it seems that 20 ml/min seeding 

flow rate was not enough to seed the aggregates while it’s efficient for single cell suspension 

seeding. The spheroids were accumulated in the central port and not evenly distributed into 

pores; which resulted in one massive spheroid that has poor oxygen and nutrients transport 

efficiency (specially at the  center) and may have resulted in developing necrotic center.   

In addition, single pass seeding at room temperature with cold medium (4°C)  resulted in 

better seeding efficiency for both seeding architectures and lower LDH activity. Hepatocytes 

have high metabolic rates, and by seeding with solutions at 4°C, we lower their activity and 

make them less sensitive to any oxygen deprivation.  

Calculations based on hepatocyte oxygen uptake rates suggests that flow rate should be 

higher than 14.4 ml/min to meet hepatocyte oxygen requirements (if inlet oxygen partial pressure 

to bioreactor was considered to be 158 mmHg (O2 atmospheric partial pressure) and outlet 

pressure was 35 mmHg (perivevous zone in liver). On the other hand, calculations based on 

physiological shear stress at the sinusoid (5 to 20 dyne/cm2) and the volumetric flow rate in our 

porous scaffold suggests that flow rate should not exceed 5.67 ml/min. 

While a flow rate of 20 ml/min was adequate for seeding a cell suspension, it was too low to 

efficiently seed spheroids into the scaffolds. The spheroids settled in the central port and did not 

distribute into pores, resulting in excessive spheroid aggregation, diffusion limitations, and cell 

death. Seeding flow rate of 20 ml/min and culturing at 15 ml/min may have resulted in 

hepatocyte damage and death due to high shear stress forces. 
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5.5 Conclusions and Future Work 

• Available data indicate that effective hepatocyte seeding and perfusion culture requires 

higher flow rates that raise the risk of shear-induced cell damage. Alternate methods for 

enhancing diffusional transport in these systems are needed.  

• Seeding with pre-formed spheroids has higher efficiency than seeding with cell 

suspension with higher cell viability, too. On the other hand, hepatocytes performed their 

metabolic functions at higher rates when seeded as single cell suspension compared to 

seeding with pre-formed spheroids. 

• Poor performance and low viability of hepatocytes seeded as pre-formed spheroids 

resulted from the spheroids settling down at the central port and forming a one-massive 

aggregate where most of the cells don’t receiving the required oxygen and nutrients and 

eventually die. Increasing the seeding flow rate beyond 20 ml/min was not a valid option, 

as this flow rate will expose the hepatocytes to even higher shear forces and they will 

definitely die from that. 

• Modifications to the perfusion system can be made to maintain the hepatic specific 

functions in vitro by insuring the adequate delivery of oxygen and nutrients and removal 

of the waste products; i.e. co-culture with MSCs to shield them from excessive shear 

forces and in the same time initiate vasculogenesis in the spheroids by differentiating 

MSCs to endothelial cells.  
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CHAPTER SIX 

THE EFFECTS OF CO-CULTURING HEPATOCYTES WITH BONE MARROW 

MESENCHYMAL STEM CELLS  

 

6.1 Introduction 

 The vascular network in the liver and the bile drainage system are crucial to both the 

viability of hepatocyte cells and the detoxification of the blood. Hence, tissue engineered 

systems should address the need of such networks. Incorporating microvascular endothelial cells 

to the in vitro cultures will help in the vasculogenesis, angiogenesis and anastomosis with the 

host vascular network. It will enhance hepatocytes viability and their specific functions, as this 

will mimic the natural environment in the liver as well as protect them from any excessive shear 

forces they might experience in the dynamic perfusion system.  This approach is hindered by the 

availability of such cell populations and the difficulties in isolating endothelial cells at high 

yields, specifically sinusoidal endothelial cells (SECs). SECs lose their phenotype rapidly after 

isolation and their survival depends on co-culturing with primary hepatocytes. There are limited 

in vitro configurations that can accommodate such populations and they can’t be passaged and 

hence they senesce rapidly [97-100]. 

Mesenchymal stem cells can provide an alternate cell source to substitute for endothelial 

cells if either differentiated before co-culturing with hepatocytes [65, 101, 102], or differentiated 

while co-culturing under flow conditions [64]. MSCs might also provide an alternate cell source 

to substitute for primary hepatocytes [103-106] in hepatocyte transplantation because of their 

multiple differentiation potential and nearly unlimited availability. 

It has been shown that co-culturing hepatocytes with BM-MSCs enabled the restoration 

of hepatocyte cell polarity due to the ECM secreted by MSCs (e.g. collagen Type-I) as well as 
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providing a number of cues for hepatocyte growth and development [59]. Also, MSCs can be 

differentiated into connective tissue cells; i.e. endothelial cells. Wang et al. [64] demonstrated 

the ability of murine embryonic mesenchymal progenitor cell line, C3H/10T1/2 to differentiate 

into cells that express mature endothelial cell–specific markers such as CD31 and von 

Willebrand factor [64, 107].  

The objective of this work was to optimize the spatial arrangement of hepatocyte (HCs) 

and bone marrow mesenchymal stem cells (MSCs) to produce more effective cell-cell contact in 

3D environment. This could be achieved by optimizing seeding architecture.  

As part of this work, we also examined heterotypic cultures in perfusion system. The 

premise was that MSCs can provide protection against shear forces by differentiating to vascular 

phenotypes as well as secreting ECM components that may associate with and hence stabilize the 

cell membranes of hepatocytes. 

 

6.2 Experimental Work 

6.2.1 Materials  

CellTracker™ Calcein Red-Orange AM and CellTracker™ Green CMFDA dyes were 

purchased from Life Technologies (Thermo fisher Scientific Inc.). All other chemicals and 

solvents were of analytical reagent grade. 

 

6.2.2 Bone Marrow Mesenchymal Stem Cells Isolation and Culture 

The same hepatocytes donors rats were used to isolate bone marrow mesenchymal stem cells 

following a protocol described by Karaoz et al. [108] and slightly modified by our group. 

Briefly, femur and tibiae were excised then all muscles and connective tissues were detached. 

The whole bones were then soaked and vortex mixed in ringer solution (without enzymes) for 30 
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minutes to remove excess soft tissue. After that, the epiphyses were cut away by torsion-twisting 

off using two Kelly clamps. The diaphyses cavities were then flushed with pre-warmed DMEM 

(low glucose) supplemented with 10% FBS, 50 mg/L gentamicin and 2.5 mg/L Fungizone (same 

medium was used for cells culture as well). This flushing was carried out using 18-gauge needle 

inserted into the shafts to extrude the bone marrow. Marrow plug suspension was then dispersed 

by pipetting, successively filtered through 70-µm mesh nylon filter into sterile 50 ml centrifuge 

tube and then centrifuged 200 x g for 10 min. Supernatant containing thrombocytes and 

erythrocytes was discarded, and the cell pellet was resuspended in sterile PBS and centrifuged 

(repeated two times). At the final wash, the cell pellet was resuspended in culture medium and 

cells from one rat were seeded onto four 10 cm culture dishes (7 ml per dish) and incubated at 

37°C in a humidified atmosphere containing 5% CO2 for 3 days without changing medium. On 

the third day, red blood cells and other non-adherent cells were removed and fresh medium was 

added to allow further growth. The adherent cells grown to 70% confluency were defined as 

passage zero (P0) cells. 

 

6.2.3 Chitosan-Heparin Disc Scaffolds Fabrication and SEM Imaging 

Porous disc scaffolds were prepared by freezing the same chitosan solution in 96-well 

plate with stainless steel bottom (Fig. 36). Disc scaffolds designated for cell culture were 

neutralized with 5% ammonia, washed with PBS, derivatized with Heparin, sterilized by soaking 

in 80% ethanol for 48 hours and finally incubated with medium containing 10% FBS for 24 hrs 

prior to cell seeding. Discs used for SEM imaging purposes were kept dehydrated and sputter 

coated with gold for imaging; one of them was cut longitudinally to view the pores directions. 



www.manaraa.com

73 
 

 

 

Figure 36: Fabrication of chitosan disc scaffolds. 

 

6.2.4 Cell Labeling with Fluorescent Dyes 

 
For hepatocytes, the CellTracker™ Green CMFDA dye was used as manufacturer’s 

recommended protocol. First, the dye powder was dissolved in 5 µl sterile DMSO to make 10 

mM (molecular weight of dye is 464.8) then diluted in 2 ml culture medium (serum free) to make 

25µM working solution. The solution was then warmed up to 37°C and used to resuspend the 

hepatocytes. After that, the suspension was incubated for 30 minutes in 15 ml centrifuge tube in 

ice (reduce hepatocyte metabolic rate). The cells were then centrifuged at 300 rpm for 5 min and 

the dye working solution was replaced with fresh, pre-warmed medium. The hepatocytes were 

now ready to be seeded into the scaffolds. 

For MSCs, CellTracker™ Calcein Red-Orange AM dye was used following manufacturer 

instructions. The dye molecular weight is 789.55; it’s dissolved in 6.3 µl DMSO to make 10 mM 

stock dye solution then diluted in 2.53 ml culture medium (serum free) to make 25µM dye 

working solution. The dye working solution was added to MSCs growing in a 100 mm dish and 

incubated for 30 minutes and then was replaced with fresh, pre-warmed medium. The cells were 
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incubated again for another 30 minutes at 37°C then trypsinized and resuspended in fresh, pre-

warmed culture medium to be seeded into the scaffolds. 

 

6.2.5 Cell Seeding and Culture into Three Different Architectures 

Three different seeding architectures were examined as illustrated in table 6. Seeding was 

done with single cells suspensions of either hepatocytes only or hepatocyte with MSCs at 2:1 

ratio as described by Gu et al. [109], and cultured on orbital shaker (~50 rpm) to enhance mass 

transfer in the wells. Culture medium was the same as hepatocyte culture medium mentioned 

above. Collagen gel sandwich configuration was used as control. 

 The seeding density was chosen based on the work done by Glicklis et al. [110]. They 

used a seeding density of  5X 105 cells/scaffold/ml for scaffolds of 1.5 cm diameter and 1.0 cm 

height.  The disc scaffolds fabricated in our lab were 0.64 cm in diameter and 0.2 cm in height 

for 96-well plate, and 1.14 cm in diameter and 0.1 cm in height for 48-well plate. The required 

seeding density was 0.018 million cells per disc scaffold in the 96-well plate and 50,000 cells/ 

cm2 in the 48-well plate. Monolayer seeding density based on the unit area was also examined 

(100,000 cells/cm2). 

Table 6: Seeding architectures. Four different seeding architectures into the chitosan-heparin disc scaffolds. 

6.2.6 AlamarBlue® Viability Test in the Chitosan-Heparin Disc Scaffolds 

AlamarBlue® cell health indicator assay was performed as described by manufacturer. 

Briefly, AlamarBlue® was added to the cultured cells at a dilution of 1:10. The cells were 
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incubated with AlamarBlue® for three hours; where fluorescent was measured by collected 

samples after one hour (T1) and after three hours (T2). The resazurin reduction rates were then 

calculated for each condition. 

 

6.2.7  Spheroids Sizes Measurement and Statistical Analysis for Spheroids Formed in Disc 

Scaffolds 

Phase contrast images using a digital camera were captured for each condition on days 7 and 

17 of culture. At least five images per condition were taken, and the diameters for the spheroids 

were measured using ImageJ® software. The mean diameters and standard deviations were 

calculated and then plotted using SigmaPlot® software. One-way ANOVA statistical analysis 

was performed to evaluate the spheroid reduction in size between the two measurements per each 

condition. A  p-value < 0.05was considered to be significant. 

 

6.2.8 Monotypic and Heterotypic Perfusion Cultures in Chitosan-Heparin Scaffolds 

  Porous scaffolds with a closed ended, annular structure and radial pore architecture 

(described previously in Fig. 12: surface frozen scaffolds) were used in this experiment.  The 

chitosan scaffolds were modified with heparin, sterilized with 80% ethanol, washed with sterile 

PBS and perfused with 10% FBS culture medium for 24 hours prior to seeding. The same 

bioreactor described previously was used (in Fig. 13: surface frozen scaffolds). Cells were 

seeded as single cell suspensions with cold medium repeated one way (non circulating) passes at 

20 ml/min and cell concentration of 35 million/ml. One scaffold was seeded with hepatocytes 

only (monotypic culture) with 100 million cells suspended in 35 ml cold medium. One scaffold 

was seeded with mixed cells suspension of MSCs and hepatocytes (heterotypic culture) (70 
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million hepatocytes plus 27.925 million cells MSCs at 2:1 ration). Seeding efficiency was 

estimated by counting the cells that were not seeded into the scaffolds after the seeding period). 

The flow rate used subsequently was 15 ml/min all along the whole culture period. Media 

samples were collected daily for metabolic function assays (albumin synthesis and urea 

secretion) and LDH activity assay. Scaffolds were fixed in 10% formaldehyde and processed for 

histology (H&E staining). 

 

6.2.9 Hepatocyte Metabolic Functions Assays (Albumin Synthesis and Urea Secretion) 

Metabolic performance of cultured hepatocytes was evaluated by measuring: (1) the rate of 

albumin synthesis via Enzyme-linked immunosorbent assay (ELISA) using antibody specific to 

rat albumin and (2) the rate of urea secretion using diacetyl- monoxime colorimetric method 

described by Rozet et al. [84] and. Media samples were collected daily for metabolic functions 

analysis (albumin and urea secretion). Measurements were performed in triplicate (n =3).  Data 

were plotted as means with error bars representing standard deviation. 

 

6.3 Results 

6.3.1 Pores Dimensions and Architecture as Shown by Scanning Electron Microscopy 

(SEM) 

 The goal was to produce spheroids that were limited in size to < 100 µm by controlling 

pores sizes. The pore size was controlled by the amount of chitosan solution added to each well 

as well as the freezing time. For 96-well plate, the amount of chitosan solution added to each 

well was 0.05 ml. For 48-well plate, 0.1 ml of chitosan solution was added to each well. The 

freezing time was 15 min in Isopropanol/dry ice bath. 
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The pores at the bottom of the scaffolds were very small (Fig. 37A) (almost sealed) and 

the pores opening at the top were of sizes about 100 µm (Fig. 37B). The pores were 

longitudinally directed and were tapered towards the bottom of the scaffolds (Fig. 37C) so they 

will hold the spheroids in place and in the same time prevent them from fusing together. 

  

 

Figure 37: SEM images of chitosan disc scaffolds. (A) Bottom view, (B) top view, and (C) longitudinal 
cross section. 

 

6.3.2 Cell Morphology in the Disc Scaffolds  

MSCs were seeded one day prior to hepatocyte formed spheroids in the chitosan-heparin 

surfaces (Fig. 38A&B). Hepatoctyes in collagen gel sandwich formed one layer of cells with bile 

canaliculi network formed as evidence of the dye CellTracker™ Green CMFDA secreted to the 
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bile (Fig. 38C&D). The H&E histology images showed that hepatocyte/MSCs spheroids (Fig. 

38E) were smaller in size with tightly-fused cells, while hepatocytes only spheroids (Fig.40F) 

were bigger in size with less fused cells. 

 

Figure 38: Cell morphology in the disc scaffold system. Phase contrast images (A&C), digital color 
fluorescent images (B&D) and H&E histology images (E&F) of hepatocyte/BM-MSC co-cultures in disc 
scaffolds cultures. (A&B) MSCs only (day 2 of culture), (C&D) hepatocytes in collagen gel sandwich, 
(E) hepatocyte/MSCs co-culture, and (F) hepatocytes only after two weeks in culture. Hepatocytes were 
labeled with CellTracker™ Green CMFDA dye and MSCs were labeled with CellTracker™ Calcein Red-
Orange AM dye. Scale bar 100 µm. 
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The cells formed compact spheroids with well-defined smooth surfaces in all the mixed 

co-cultures (Fig. 39A, C, and E). Hepatocytes formed loose spheroids with rough surfaces 

aggregates in the mono-cultures (Fig. 39G). For condition #1; where MSCs were seeded one day 

prior to seeding hepatocytes, the MSCs formed spheroids in the center and hepatocytes 

surrounded them at the peripheries as evidence of fluorescent images (Fig. 39B). For conditions 

#2 (mixed suspensions of MSCs and hepatocytes) and condition #3 (hepatocytes seeded one day 

prior to MSCs), the spheroids looked like they were mixed populations of both MSCs and 

hepatocytes without defined arrangement (Fig. 39D&F). It was noticed from the fluorescent 

images that the CellTracker™ Green CMFDA dye was not uniformly distributed in the 

hepatocyte cytosol; which indicates that the bile canaliculi network may have been formed inside 

the spheroids (Fig. 39B, D, F and H). When fluorescent intensity quantified for each condition 

(Fig. 40), we noticed that hepatocytes and MSCs had the highest fluorescent activities in 

condition #2 where they were mixed together as cell suspensions which indicates that more cells 

were viable at this seeding architecture compared to the other seeding conditions. In addition, as 

CMFDA dye was expressed more in condition#2, it indicates that the hepatocytes have stronger 

polarizations expressed as the MSCs were mixed with hepatocytes at the same time before they 

form the aggregates which may have contributed to better polarization during the aggregation 

process. We also examined the efficiency of hepatocyte membrane polarization by measuring the 

fluorescent intensity when labeling with anti-Connexin 32 (gap junction protein) (Fig.41A) and 

anti-ZO-1 (tight junction protein) (Fig. 41B). Condition #2 (mixed suspensions of hepatocytes 

and MSCs) had the strongest fluorescent intensity for anti-Connexin 32. When the seeded discs 

were cultured in an un-agitated condition, there were no significant difference between the gap 

and tight junctions’ expressions. All co-culture conditions expressed higher intensities compared 
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to the mono-cultures (hepatocytes only) which indicate better membrane polarization in the co-

culture systems. 

 
Figure 39: Phase contrast images (A, C, E and G) and digital color fluorescent images (B, D, F and H) of 
hepatocyte/BM-MSC co-cultures in disc scaffolds cultures after one week of culture. Condition #1: MSCs 
then hepatocytes (A&B), condition #2: mixed suspensions of MSCs and hepatocytes (C&D, condition #3: 
hepatocytes then MSCs (E&F), and condition #4: hepatocytes only (G&H). Hepatocytes were labeled 
with CellTracker™ Green CMFDA dye and MSCs were labeled with CellTracker™ Calcein Red-Orange 
AM dye. Scale bar 100 µm. 
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Figure 40: Fluorescent intensities quantification for all seeding architectures for hepatocytes labeled with 
CellTracker™ Green CMFDA dye and MSCs labeled with CellTracker™ Calcein Red-Orange AM dye 
(on day 7 of culture). Measurements were performed for different number of spheroids (n =5 to 20).  Data 
plotted as means with error bars representing standard deviation (SD).  
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Figure 41: Mean grey value Intensities for (A) anti-Connexin 32, and (B) anti-ZO-1. Measurements were 
performed for different number of spheroids (n =3 to 16).  Data plotted as means with error bars 
representing standard error of means (SEM).There is not a statistically significant difference between 
Shaking and Non-Shaking groups (P < 0.05 ). 
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6.3.3 Spheroids’ Sizes at 50,000 cells/ cm2 and 100,000 cells/ cm2 Seeding Densities 

The spheroids formed in the co-culture conditions were smaller in size compared to those in 

mono-cultures. For seeding density of 50,000 cells/ cm2, the spheroids average diameters were 

about 227± 13, 218± 30, 350± 41, and 341± 35µm on day 7 of culture for all four conditions 

respectively, and 211± 25, 315± 49, 437±112, and 314± 18 µm on day 17 with no significant 

difference between the four different seeding architectures (Fig. 42A). The spheroids were larger 

in size in the100,000 cells/ cm2  compared to the lower seeding density for all seeding 

conditions, with no significant difference between the groups (Fig. 42B). 

For seeding density of 50,000 cells/cm2, the conditions #1 and #4 exhibited reduction in 

spheroids sizes while the other two conditions had increased spheroid sizes (Fig. 42A). On the 

other hand, for seeding density of 100,000 cells/cm2, there were decrease in spheroids sizes from 

day 7 to day 17 of culture for all conditions, except when MSCs were seeded after one day of 

hepatocytes there were increase in size (Fig. 42B). We noticed for both seeding densities, 

spheroids actually got larger for condition # 3 where MSCs were seeded one day after 

hepatocytes were seeded (Fig. 42A & B). The increase in size though was not large enough to be 

due to spheroids fusion (about 50 µm increase). This was more consistent with a reasonable 

increase in cell number due to MSCs growth, given the fact that MSCs were present at the outer 

surface of the spheroids. In addition, MSCs are known to be not as shear stress sensitive as the 

hepatocytes, so they were able to prolifirate and grow with damages.  On the other hand, when 

hepatocytes were present at the surface of the spheroids (as in conditions #1 and #4), they were 

more exposed to shear forces and hence shear damage which have resulted intheir death and de-

attachements from the spheroids and consequently, reduction of spferoids sizes. 
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Figure 42: Spheroids mean diameters for (A) Seeding density of 50,000 cells/ cm2, and (B) Seeding 
density of 100,000 cells/ cm2. Measurements were performed for different number of spheroids (n =5 to 
20).  Data plotted as means with error bars representing standard error of mean (SEM). 
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6.3.4 AlamarBlue® Cell Haelth Indicator Assay  

AlamarBlue® activity for seeding density 100,000 cells/ cm2 was lower than the activity of 

50,000 cells/ cm2 seeding density on day 7 (Fig. 43A) and day 17 (Fig.43B). This observation 

was in agreement with the hypothesis that more cells were competing for nutrients and supplies, 

and hence, resulted in lower number of viable cells (as lower AlamarBlue activity indicates less 

number of viable cells available). 

We can notice here that the activity decreases in general from day 7 to day 17 for all 

conditions (Fig. 44A&B) as hepatocytes were being exposed to damaging shear stresses and 

hence they lost their viability.  

 

6.3.5 Hepatocyte Metabolic Functions and Viability 

 For seeding architecture condition # 1 (MSCs seeded one day prior to hepatocyte), the 

albumin rates were close to those for collagen gel sandwich controls in the first five days of 

culture and dropped afterwards, while urea secretion rates were fluctuating between either higher 

rates or similar rates to the collagen gel sandwich configuration (Fig. 44A&B). As MSCs formed 

spheroids first, then hepatocytes surrounded them at the peripheries, this configuration may have 

exposed more hepatocytes to the shear forces and caused the rapid decline in their functions 

compared to the preserved ones in the other two configurations. 

For seeding architectures condition #2 (mixed suspensions of MSCs and hepatocytes) and 

condition #3 (hepatocytes then MSCs), hepatocytes synthesized albumin at rates similar to those 

in the control collagen gel sandwich configuration in the first week of culture and then it 

declined in the second week of culture (Fig.44C&E). They secreted urea at rates substantially 

higher than collagen gel sandwich cultured hepatocytes (Fig. 44D&F). The enhanced hepatic 
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functions were hypothesized to be due to substrates secreted by MSCs and utilized by 

hepatocytes that made them more tolerant to shear stresses. 

 
 

Figure 43: AlamarBlue® reduction rate for both seeding densities 50, 000 cells/ cm2 and 100,000 
cells/cm2 on: (A) Day 7 and (B) Day 17 of culture time. Measurements were performed in triplicate (n 
=3).  Data plotted as means with error bars representing standard error of mean (SEM). (P< 0.05) 
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 Hepatocytes cultured without MSCs in the three dimensional environment synthesized 

albumin at lower rates than collagen gel sandwich configuration (Fig. 44G), while urea secretion 

was elevated (Fig. 44H). This suggests that monotypic cultures lack necessary signals that MSCs 

were able to provide in the heterotypic cultures. 

After two weeks of culture (~17 days), in all heterotypic conditions, neither albumin nor urea 

was detected; this suggests that hepatocytes de-differentiated and lost their metabolic functions. 
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Figure 44: Metabolic functions of hepatocytes/BM-MSCs cultured disc scaffolds. Albumin secretion 
rates (A, C, E and G) and urea secretion (B, D, F and H) of hepatocyte/BM-MSC co-cultures in disc 
scaffolds cultures for the four seeding architectures. (A&B) condition #1: MSCs then hepatocytes, (C&D) 
condition #2: Mixed suspensions of MSCs and hepatocytes, (E&F) condition #3: Hepatocytes then MSCs, 
and (G&H) condition #4: Hepatocytes only cultures. Measurements were performed in triplicate (n =3).  
Data plotted as means with error bars representing standard deviation. 

 

 

6.3.6 Mathematical Model for Urea Production Rate 

 

Since we didn’t see continuous decline in the urea production rates, we assume that the 

aggregates were divided into two zones (outer and inner) that produce urea at two different rates 

based on their proximity to the nutrients and oxygen source (media). The fluctuation was mostly 

noted in condition #1 and condition #4; where hepatocytes were arranged at the outer surfaces of 
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the aggregates. This phenomena was not observed in conditions #2 (mixed suspensions of 

hepatocytes and MSCs) and condition #3 (MSCs seeded one day after hepatocytes aggregated 

formed). The outer layer of cells in a given aggregate (ZoneOUT) was exposed to the agitating 

medium and hence exposed to high mass transport in addition to high shear forces. The cells in 

this zone were arranged as one-cell thick layer. The rest of cells were at the inner region of the 

aggregate which was named ZoneIN. The aggregates were arranged as hemispheres as they 

mostly set on top of the material. There were two scenarios suggested (Fig. 45; scenario #1 when 

the outer layer cells were alive and functioning, and scenario #2 where the outer layer cells were 

dead, non-functioning but still attached to the aggregate. After one day of scenario #2, the dead 

cells will de-attach from the aggregate hence the diameter was reduced and we go back to 

scenario #1 and so forth. 

 

Figure 45: Schematic diagrams represent two scenarios: high and low metabolic functions and the two 
zones in a given aggregate. 
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To quantify the urea production rate for each zone, we assume a proportional relationship 

between production rate and oxygen concentration at that zone [111]. In order to find the oxygen 

concentration profile for each zone, mass transfer continuity equation in spherical coordinates 

was applied for steady-state system and constant ρ and DAB [112]. The diameters of the 

aggregates were extrapolated from the two measurements made on day 7 and day 17; where a 

linear relationship was generated to calculate the diameters for every day of the whole culture 

period. 

0 = &'(  ) *
+,

-
-+  
� -./

-+ $0 −  1………………… (1) 

Where; 

DAB is the oxygen diffusion coefficient in hepatocytes (3.4 X 10-10 m2/s). 

K is the oxygen consumption rate (OCR) in hepatocyte spheroids with diameter less than 300 µm 

(1.5 X 10-5 µg/mm3/s); which was assumed to be a zero order reaction as OCR reaches plateau 

value independent from the local oxygen partial pressure at the range of interest (considered as 

high oxygen concentration) [91]. 

Solutions for the equation were obtained for the two different scenarios: 

Scenario #1: outer layer of cells alive, so both diffusion and reaction terms were considered. The 

boundary conditions are: 

1) Radial symmetry around the center  

@ 
 = 0 → -.456
-+ = 0  

2) At the surface of the spheroid it’s maximal (bulk) concentration 

@ 
 = �789  →  :;<= =  :>?@A  
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Where; :>?@A is the bulk oxygen concentration,  
 is the radial coordinate and �789 is the 

spheroid radius. For ZoneOUT the limits are��789 − 25� ≤ 
 ≤ �789�. 

The oxygen concentration profile at ZoneOUT for scenario #1 is given by solving Eq. 1 above for 

the boundary conditions given: 

:;<=�
� = :>?@A  −   D
EF G�789� − 
�H………………… (2) 

 

The concentration of oxygen in ZoneIN was averaged (Cav.) over a differential volume using the 

following formula: 

:IJ. = K K K .456�+�.+,LML∅L+,O
P

O
P

Q
P

K K K +,,O
P

O
P

Q
P LML∅L+  ………………… (3) 

The :IJ. at ZoneIN can be calculated by the final equation: 

:IJ. = :>?@A  −   DRSTU,
EF  + DR,

*WF………………… (4) 

Where, 

 � = ��789 −  25�.  

 

Scenario #2: outer layer of cells was compromised due to shear forces damage, so no reaction 

term was considered, only diffusion and using Eq. (1) above with K =0.  

The boundary conditions are: 

1) At the surface of the spheroid it is maximal (bulk) concentration 

@ 
 = �789  →  :;<= =  :>?@A  

2) Flux at interface is equal from both zones 
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@ 
 = �789 − 25 → X'�YYZ+ = X'�?[Z+ =  −&'(
-./
-+   

The oxygen concentration profile at ZoneOUT for scenario #2 was obtained by solving Eq.1 above 

given by: 

:;<=�
� = :>?@A  −   D�RSTU\�]�^
_F `*

+ − *
RSTU

a………………… (5) 

 

The :IJ. at ZoneIN was calculated using Eq. (2) and Eq. (3) and given by the final equation: 

:IJ. = :>?@A  −   D�RSTU\�]� ,
EF  + DR,

*WF………………… (6) 

Where, 

 � = ��789 −  50�.  

Finally, the rates of urea production (b;<= and bcd  �e/g	) were calculated using a linear 

equation derived from the urea production rates in collagen dish sandwich at known oxygen 

concentrations (�e/g	� by the following equation: 

    b;<=/cd = 2.98 ∗ :;<=/cd ………………… (7) 

The calculated urea rates were then multiplied by the total number of live cells per zone. The 

total urea production rate was the summation of the urea production rate per zone.  

 

Results of Mathematical Model 

Figure 46A illustrates the total urea production rate for condition #1 (MSCs seeded one 

day prior to seeding hepatocytes) for the first week of culture as predicted by the model versus 

the actual measured values.  In the co-culture system, we have seen higher urea secretion rates 

than the predicted values based on mono-culture system. The model assumes that a whole layer 
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of cells at the outer surface of an aggregate was damaged by shear force and removed. While in 

the actual cultures that might not be exactly the case; some of the cells at the outer layer were 

damaged and removed not the whole layer of cells. Also, the model predicts the urea secretion 

values based on a base line of the secretion in the collagen gel mono-cultures. The elevated 

levels of urea secretion may have been caused by a combination of the 3D culture architecture 

and substrates or cues secreted by MSCs and used by hepatocytes; e.g., MSC-derived matrix, 

growth factors, and ammonia. These results are in agreement with previous reports; Isoda et al. 

[113] found that soluble factors secreted from BM-MSCs had the effect of maintaining liver-

specific functions and significantly increase urea secretion and albumin synthesis.  Similarly, 

when culturing porcine hepatocytes with BM-MSCs at a ratio of 2:1, immunocytochemical 

staining studies by Gu et al. [109] revealed that polarity-restored, organotypic islands of 

hepatocytes were surrounded with a dense ECM network that was secreted by MSCs. These 

studies further confirmed the roles of fibronectin, laminin, and collagens assembly within close 

link between cellular architecture and hepatocyte functions. If we assume a base line of urea 

secretion as the value in a co-culture system, eq. (7) will change to: 

     b;<=/cd = 6.4 ∗ :;<=/cd………………… (8) 

And then the predicted values were closer to the measured values (Fig. 46B). But we still see 

drop of the production on days 5 and 7 (almost zero); this phenomena may have been caused by 

the release of cellular bi-products from dead cells that were negatively affecting metabolic 

functions of surviving hepatocytes. Another hypothesis for this drop was that MSCs were 

proliferating and their nutrients and oxygen demands were increased which caused depletion in 

their availability for hepatocytes use.   
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In addition, we have also seen higher magnitude of fluctuation in the conditions where 

hepatocytes were most likely to be at the outer layers of the aggregates (condition #1 and 

condition # 4). In the other two seeding arrangements (condition #2 and 3), the hepatocytes were 

less exposed to shear forces and most likely protected by the MSCs. In condition #3, MSCs were 

actually seeded one day after seeding the hepatocytes. This seeding arrangement allowed the 

hepatocytes aggregates to form first, and then MSCs attached to the outer layer which may have 

provided physical barrier against shear forces. In seeding condition #2, where mixed cell 

suspensions of hepatocytes and MSCs were seeded at the same day, in which MSCs may have 

secreted cues that made hepatocyte membranes more shear resistant. Moreover, MSCs 

contributed to providing some physical barrier by segregating themselves to the outer layer of the 

aggregates. 
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Figure 46: Total urea production rate for condition #1 (predicted vs. measured) when (A) and collagen 
gel values used as base line for predicted values (B) co-culture values used as base line for predicted 
values 

 

 

6.3.7 Metabolic Performance of Heterotypic Cultures in the Perfusion System 

 

The seeding efficiency in both monotypic seeded scaffold and heterotypic seeded 

scaffold were about 66%. Under dynamic conditions, seeding flow rate of 20 ml/min at 4°C and 

A B 
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culture flow rate of 15 ml/min, hepatocyte-MSC (heterotypic culture) seeded scaffold secreted 

urea at higher levels than scaffold seeded with hepatocytes only (monotypic culture) (Fig. 47A).  

Very low albumin levels were detected in the heterotypic seeded scaffold but at very depressed 

rates compared to the collagen gel sandwich static control (Fig. 47B), no albumin levels detected 

for the monotypic scaffold. Cells in both scaffolds expressed high levels of LDH activity (Fig. 

47C). This suggests that hepatocytes were not functioning maybe due to high shear forces in the 

system. 

 

 

Figure 47: Metabolic performance of perfused, scaffold-seeded with monotypic and heterotypic cells 
suspension (A) urea secretion, (B) albumin synthesis and (C) LDH activity at seeding flow rate of 20 
ml/min at 4°C and culture flow rate of 15 ml/min. 
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6.3.8 Cell Morphology and Neo-Tissue Formation in Perfused Scaffolds Heterotypic 

Cultures   

MSCs formed layers of cells blocking inner pores (Fig. 48A) and outer pores (Fig. 48B), 

which may have affected the flow dynamics inside the scaffold (low nutrients supply and high 

shear forces). The cells look unhealthy and heavily damaged and deteriorated (Fig. 48C), and 

most of hepatocytes nuclei did not stain purple which indicate they were dead at the time of 

fixation.  

It was noticed that new structures has been formed in the heterotypic-dynamic perfused 

scaffolds. Fat droplets appeared in some new tissues (Fig. 48D), formation of blood vessels like 

structures and hollow spheroids were noticed in the heterotypic seeded scaffold and not noticed 

in the monotypic culture (Fig. 48E & F). Some positive staining for CD31 marker was observed 

in the neo-tissue (Fig. 48G). Platelet endothelial cell adhesion molecule (PECAM or CD31) is 

found on the surface of endothelial cells and function as intercellular junction protein [107] 

(positive control Fig. 48H). 

When the H&E histology sections were exposed to blue color light, hepatocytes appeared 

to fluoresce a green color with dark circles within the cytoplasm indicating the nucleolus (Fig. 

49A). MSCs didn’t fluoresce any colors, which gave us better idea how the two types of cells re-

arranged themselves (when the fluorescent images compared side by side with the color images 

for the same sections) (Fig. 49B). We can conclude from both types of images that MSCs form 

mono layers around hepatocytes spheroids, with some cells embedded inside the spheroids 

(yellow arrows in Fig. 48B).  It was also noticed that MSCs seem to segregate to the surfaces 

(Fig. 48A-B and E-F). The hollow structures formed appeared to be lined with single cell layer 

of MSC with hepatocytes aggregates built up around the holes (Fig. 49C-H).  
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Figure 48:  H&E histology images of cross sectional areas for MSCs-hepatocytes perfused scaffolds 
illustrating: (A) layers of cells blocking central port pores, (B) layers of cells covering the outer surface of 
the whole scaffold, (C) cell debris, (D) Fat droplets, (E & F) Blood vessels-like structures (arrows), and 
(G&H) Immunohistochemistry images for CD31 (H is control). 
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Figure 49:  H&E histology images of cross sectional areas for MSCs-hepatocytes perfused scaffolds (A, 
C, E and G) under blue-color light, and (B, D, F and H) under normal-white light. 
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The hollow structures diameters range from 15.27 to 57.42 µm, which could be any type 

of blood vessel (from a vein to a capillary). 

Masson Trichrome histology images revealed that some collagen was deposited in these 

cultures, but at very small quantities (Fig. 50). 

  

Figure 50:  Masson Trichrome staining images of cross sectional areas for MSCs-hepatocytes perfused 
scaffolds. Arrows are pointing to faint blue-colored collagen.  

 

6.4 Discussion 

Culturing hepatocytes with MSCs on weakly-adhesive surfaces resulted in forming small-

very compact spheroids. While culturing them without MSCs results in larger and looser 

aggregates. These very compact spheroids may have prevented adequate mass transfer and hence 

resulted in hepatocyte death in the long term culture. 

Hepatocyte-MSC 3D disc scaffold culture results show enhanced metabolic functions in the 

first week of culture (short term cultures). This suggests that the elevated levels of urea secretion 

may have been caused by a combination of the 3D culture architecture and substrates or cues 

secreted by MSCs and used by hepatocytes; e.g., MSC-derived matrix, growth factors, and 

ammonia. In effect, MSCs and their heterotypic signals may have partially protected hepatocytes 
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from hypoxia in a three dimensional environment with limited circulation. These results were in 

agreement with previous reports; Isoda et al. [113] found that soluble factors secreted from BM-

MSCs had the effect of maintaining liver-specific functions and significantly increase urea 

secretion and albumin synthesis.  Similarly, when culturing porcine hepatocytes with BM-MSCs 

at a ratio of 2:1, immunocytochemical staining studies by Gu et al. [109] revealed that polarity-

restored, organotypic islands of hepatocytes were surrounded with a dense ECM network that 

was secreted by MSCs. These studies further confirmed the roles of fibronectin, laminin, and 

collagens assembly within close link between cellular architecture and hepatocyte functions.  

The heterotypic cultures in 3D disc scaffolds didn’t perform well in terms of albumin 

synthesis in the long term culture. Prior studies suggest that albumin synthesis by hepatocyte 

spheroids was not affected by the oxygen tension, it was rather influenced by other factors such 

as the greater extent of heterotypic cellular interactions at the lower co-culture ratios and the 

number of viable hepatocytes in the formed spheroids [110]. It has also been shown that when 

hepatocytes were exposed to shear forces higher than 5 dynes/cm2 albumin synthesis rate was 

significantly decreased. Therefore, increasing medium flow rate will provide higher supplies of 

nutrients and oxygen to the cells, but it also damages them [3, 114]. Given our orbital shaking 

system for the disc scaffolds, we speculate that there was a cyclic effect of shear forces due to 

shaking. The wall shear stress (τw) in the orbital shaking system can be estimated using Stokes’ 

approximation [115]. For a constant rotational speed (Ω =50 rpm) and an orbital radius of 

agitation (Rg =3.175 cm), the wall shear stress was estimated to be constant over the plate bottom 

surface and has a value of ~0.25 dyne/cm2. This value was calculated for an empty well, while 

the wells in the experiments conducted here were filled with high porous chitosan scaffolds 

seeded with spheroids and culture medium. In addition, Salek et al. [115] results showed that τw 
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varies with different volume fills of the wells, the higher the volume the higher the shear forces 

will be. Hence, the fluid flow was turbulent in the wells as velocity vectors in the perpendicular 

planes varies along the bottom surface of the well, which would have increased the wall shear 

stress magnitude in the radial direction for values much higher than 0.25 dyne/cm2 (Fig. 51). 

Tilles et al. [116] results showed that hepatocytes functions noticeably decreased when the flow 

conditions resulted in wall shear stresses higher than 0.33 dyne/cm2. We offer this scenario to 

explain the fluctuation in urea rates we observed in this set of experiments: the outer layers of 

hepatocytes were exposed to the moving medium and hence express high rates of urea and 

albumin. Due to the shear forces they were exposed to, these layers were damaged and they no 

longer able to produce urea and albumin. The next day, the layers of dead cells were removed 

exposing new-fresh layers of hepatocytes that secrets urea and synthesizes albumin.  

 

Figure 51:  Wall shear stress magnitudes on the bottom surface of rotating well at 100 rpm filled with 2 
ml medium. The magnitude of reference vector is in Pa (1 Pa =10 dyne/cm2). [116] 
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In the heterotypic perfusion system, MSCs blocked the pores which may have caused 

poor circulation in some pores and elevated shear forces in others. This may have contributed to 

hepatocyte death and overall poor metabolic functions. In addition, seeding MSC at the same 

time of seeding hepatocytes (mixed cell suspensions of MSCs and hepatocytes) may have 

interfered with the formation of cell-cell junctions between hepatocytes themselves and hence 

didn’t allow them to form the required junction for their survival. 

It was noticed that new structures were formed in the heterotypic-dynamic perfused 

scaffolds. Some blood-vessel like structures (suggests vasculogenesis) and fat droplets formation 

inside cells (suggests adipogenesis and lipocytes) were noted. This was due to the capability of 

MSCs to differentiate into other phenotypes of supporting cells that will be beneficial for hepatic 

neo-tissue formation in the field of bioartificial liver, i.e. endothelial cells or adipocytes.  

 

6.5 Conclusions and Future Work 

• Hepatocyte-MSC 3D disc scaffold culture results suggest that elevated levels of urea 

secretion may have been caused by a combination of the 3D culture architecture and 

substrates or cues secreted by MSCs and used by hepatocytes; e.g., MSC-derived matrix, 

growth factors, and ammonia. In effect, MSCs and their heterotypic signals may have 

partially protected hepatocytes from hypoxia in a three dimensional environment with 

limited circulation.  

• In heterotypic perfusion system, MSCs blocked the pores which may have caused poor 

circulation in some pores and elevated shear forces in other poor. This may have 

contributed to hepatocyte death and overall poor metabolic functions.  
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• Co-culturing with MSC is a potentially useful approach for hepatic neo-tissue formation 

in the field of bioartificial liver. 

• Further studies are required to investigate enhancement of intra-aggregate diffusion by 

using ECM-based microparticles to assemble mixed spheroids of hepatocytes and 

vascular-differentiated mesenchymal stem cells. 

• Shear protection is required in these scaffold based microstructures. One possible method 

is to encapsulate the cells with ECM material; e.g., shrink wrapping method based on 

established soft lithography techniques describe by Palchesko et al. [117]. Or the 

microencapsulation technology used at Dr. Matthew’s lab; a technique that is based on 

the complex coacervation principle [118].  The use of chemical additives to protect cells 

from fluid-mechanical damage is another possible solution. These additives are believed 

to have two different protection mechanisms that act upon on the cell. The first 

mechanism is of biological effect; the additive changes the cell itself to make it more 

shear resistant by its physical incorporation into the plasma cell membrane. The other 

mechanism is a physical protection; which means that the factors that are affecting the 

level/frequency of transmitted shear forces to the cell in a given culturing system have 

changed so that less cell damage is observed while the resistance of the cell to shear 

remains unchanged. This can be achieved by changing the viscosity of the fluid the cells 

are exposed to [119]. 
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CHAPTER SEVEN 

THE EFFECTS OF ENCAPSULATING HEPATOCYTES WITH OR WITHOUT BONE 

MARROW MESENCHYMAL STEM CELLS (BM-MSCS) WITHIN CHITOSAN-GAG 

FIBERS ON HEPATOCYTE VIABILITY  

 

7.1 Introduction 

As noted in the previous chapters, hepatocytes lose their functions and de-differentiate 

upon excision from their natural environment and cultivated in biomaterial matrices. Further, it 

was concluded from the studies on the chitosan-heparin scaffolds that the shear forces have great 

effects in hepatocytes viability and cause subsequent death upon perfusion in the dynamic 

system. Hence, we sought other alternatives to shield the cells from these forces.  

One promising approach is the encapsulation system. Microencapsulation has shown to 

produce high density cultures when cells are encapsulated in ionic complexes between cationic 

chitosan and anionic GAG. This encapsulation method can protect from shear damage in flow or 

stirred cultures. Anchorage-dependent cells like hepatocytes can be provided with suitable 

surfaces by co-encapsulating microcarriers or other ECM attachment materials. In addition, 

microencapsulation will provide convenient method of cell handling and reduce cell damage that 

can be caused by pipetting. This method can also allow microcapsules to retain and concentrate 

secreted cellular products if the appropriate membrane permeability is achieved.  Finally, 

microencapsulation methods are examined as means of providing the required barrier between 

exogenous cells and the host immune system [118]. Microencapsulation can be in the form of 

microcapsules or fibers. In this work, fibers were being investigated as possible approach for 

hepatocytes encapsulation. When primary rat hepatocytes were encapsulated in HA-collagen 

capsules and perfused with medium in a perfusion bioreactor system in previous work at Dr. 

Matthew’s lab, they were able to maintain their metabolic functionalities for one week [120].  
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The Objective of this work was to optimize fiber conditions for hepatocytes culture by 

evaluating cell morphology and organization as well as metabolic function (albumin and urea 

secretion). The GAGs investigated in this work were: Chondroitin Sulfate A (CSA), Hyaluronic 

Acid (HA) and Heparin (HEP). HA-CHI formula has been shown to produce the thickest walls 

without swelling of the capsules and on the other hand, CSA-CHI has a high attachment-

enhancing effect were hepatocytes exhibited extensive aggregation [118, 121, 122].  

  

 

7.2 Experimental Work 

7.2.1 Materials  

High molecular weight (HMW) chitosan from crab shells (molecular weight about 600 

KDa with 75 - 85% Deacetylated chitin), Hyaluronic acid (HA) sodium salt from Streptococcus 

equi (molecular weight  about 15,000– 30,000 Da), Heparin sodium porcine mucosa,  

Chondroitin sulfate A (CSA) sodium salt from bovine trachea (molecular weight  about 50–100 

kDa, polygalacturonic Acid (PGA) sodium salt and carboxymethylcellulose (CMC) sodium salt 

(medium viscosity with molecular weight about 250 kDa) were all purchased from Sigma-

Aldrich (St. Louis, MO). Type I rat-tail collagen (2 mg/ml) prepared in house as described 

elsewhere in this document was used. All other chemicals and solvents were of analytical reagent 

grade. 
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7.2.2 GAG-Chitosan Polyelectrolyte Complexes Formation into Fibers 

Different compositions of GAGs with double strength collagen (2 mg/ml) were tested to 

evaluate the wall thickness of the membranes formed using phase contrast microscopy and 

evaluate their physical appearance in terms of stretching, snapping, rupturing and the ease of 

handling.  

The formulations of polyanionic solutions examined for fibers formation were as follows: 

1) 8%CSA, 3%CMC, double strength collagen, 0% heparin. 

2) 8%CSA, 3%CMC, double strength collagen, 0.5% heparin. 

3) 8%CSA, 3%CMC, double strength collagen, 1% heparin. 

4) 2%HA, double strength collagen, 0% heparin. 

5) 2%HA, double strength collagen, 0.5% heparin. 

6) 2%HA, double strength collagen, 1% heparin. 

7) Mixture of 8%CSA and 2%HA with double strength collagen, 0% heparin. 

8) Mixture of 8%CSA and 2%HA with double strength collagen, 0.5% heparin. 

9) Mixture of 8%CSA and 2%HA with double strength collagen, 1% heparin. 

 

All polyanionic solutions were made by dissolving each GAG separately in Sorbitol-HEPES 

buffer contains: 0.4 g/L KCl, 0.5 g/L NaCl, 3.0 g/L HEPES.Na, and 36 g/L sorbitol in de-ionized 

(DI) water with pH adjusted to ~7.4 [121]. The fibers were formed following the 

microencapsulation protocol described by V. Lin and H. Matthew 2002 with double strength 

collagen (2 mg/ml) interior [121]. The fibers were formed by extruding the GAG-collagen 

solution through a 24G catheter using a syringe pump at flow rate of 0.34 ml/min. The fibers 

were extruded into a beaker containing chitosan-sorbitol solution (final concentrations were 0.6 
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wt% chitosan and 5.6 wt% sorbitol).The chitosan-sorbitol solution was made by mixing two 

solutions prepared separately: (1) chitosan solution that was made by dissolving 3g of high 

molecular weight chitosan in 250 ml DI water with 0.6ml acetic acid added after 24 hrs, and (2) 

sorbitol solution made by dissolving 28.4g sorbitol in 250 ml DI water. After fibers were 

extruded, they were allowed to set in the chitosan-sorbitol excess bath for two minutes, the fibers 

were then washed with 0.9 wt% NaCl, then poured into beaker containing PGA (0.1 wt%) in 

Sorbitol-HEPES buffer used for surface stabilization of the fibers.  

For wall thickness evaluation study, the fibers were crushed under cover slips and phase 

contrast images were collected. 

  

7.2.3 Culturing Hepatocytes in Chitosan-GAG-Collagen Fibers 

  Based on the results from previous experiment, the formula of 2 % HA + 1 % heparin + 

double strength collagen (2 mg/ml) composition was chosen to carry on cell culture experiments. 

Hepatocytes only and MSCs with hepatocytes were encapsulated in the fibers as previously 

described. 0.2 ml hepatocyte volume (~8 million) and 0.2 ml of GAGs + collagen solution were 

extruded through a 24G catheter using a syringe pump at flow rate of 0.1 ml/min and the fibers 

were pulled manually into chitosan-sorbitol excess bath and cut with a surgical blade into 1 cm 

fiber long (Fig. 52A); into which each segment has about 1 million hepatocytes. The fibers were 

then poured into beaker to be washed with 0.9 wt% NaCl for three times with shaking, poured 

into another beaker filled with 0.1 wt% PGA and shook once and again rinsed with 0.9 wt% 

NaCl. Finally, the fibers with cells were transferred to the culture wells in 6-well plate with 1 ml 

of medium added to each well (without FBS) (Fig. 52B). For heterotypic cultures, 4 million 

hepatocytes were mixed with 8 million MSCs (1:2 ratio) and the fibers were cut into pieces of 1 
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cm length that contain about 1 million hepatocytes. Media samples were collected daily for urea 

and albumin analysis and digital images were captured. 

 

 

Figure 52:  Hepatocytes encapsulated in fibers. (A) one-cm long fibers in chitosan-sorbitol bath. (B) Each 
fiber was poured into a well of 6-well plate tissue culture plate with 1 ml hepatocytes medium. 

 

7.2.4 Cell Distribution in a Bundle of Chitosan-Hyaluronic acid- Heparin- Double 

Strength Collagen Fibers 

Twenty million fixed hepatocytes (1:1 volume ratio of cell volume to GAGs solution 

volume) were encapsulated in the fibers (2% HA with 1% heparin and double strength collagen 

at 2 mg/ml concentration). To form a bundle of fibers, the fibers were wrapped around a stainless 

A 

B 
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steel rod that was attached to a rotating motor at fixed speed of 30 cm/min. The bundle was then 

washed with 0.9 wt% NaCl, stabilized with 0.1 wt% PGA solution, and washed again with 0.9 

wt% NaCl. The wrapping was performed in a certain procedure: wrap the first layer at certain 

angle and the second layer at the opposite angle and hence ensure a porous scaffold will form 

(Fig. 53).  

The seeded bundle scaffold was then processed for histology and H&E staining. 

 

 

Figure 53:  Fiber bundle fabrication method. Schematic diagram of bundle scaffold fabrication process of 
hepatocytes encapsulated in 2 % HA + 1% heparin + double strength collagen. 
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7.3 Results 

7.3.1 Membrane Thickness for Different Formulas of GAG-Chitosan Polyelectrolyte 

Complex Fibers 

The phase contrast imaging observations were summarized in the table below (table 7) 

with noticeable remarks for each formula. 2% HA with 1% heparin and double strength collagen 

formed the thickest membrane with fibers that didn’t snap while formation and stayed as 

continuous fibers which made them easy to handle. The dehydrated fibers membranes were very 

thin (Fig. 54.A) with thickness of about 1 µm (Fig. 54B). We can notice here that the membranes 

have smooth surface from inside and rough surface from the outside, as the chitosan acting with 

the GAG from outside and building up towards the outside. 

 

Table 7: Summary of observations for fibers made from different GAG formulations. 

 

 

8%CSA+3%CMC+ 

double strength collagen 

(2mg/ml neutralized) 
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The fiber membranes formed with this technique have porous network as seen via 

scanning electron microscope (Fig 54C & D); this will allow small molecules to pass through the 

membranes in and out the fibers but in the same time provide means of  protection against flow. 

This architecture resembles the space of Disse at the hepatic sinusoids. The inside pores were in 

the range of 119.6 ± 24 nm diameters (Fig. 54C) and the outside pores were in the range of 178.3 

± 33 nm diameters (Fig. 54D) as estimated using ImageJ (Feret diameter). 

  

  

Figure 54:  SEM photos of the fiber’s membrane. (A and B) is an edge of a fiber membrane. The 
membranes have high porosity from inside (C) and outside (D). 

 

When fixed hepatocytes were encapsulated in the 2% HA with 1% heparin and double-

strength collagen, and then flattened by crushing them under glass cover slip, the wall thickness 

was 25.90 ± 9.87 µm (Fig. 55A&B), while the dehydrated membranes had thickness of  ~ 1 µm 

A B 

C D 

Inside surface 

Outside surface 
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(as seen via SEM images Fig. 54A). This is in agreement with the fact that the membranes were 

basically hyrogels with water as the main content.  

We can see from the SEM images (Fig. 55C&D) that the fixed cells were connected to 

each other with the ECM material used in the encapsulation (collagen) which will provide the 

basic ECM from the start of the culture until the live cells secrete their own ECM material. This 

is of high importance for anchorage-dependent cell types like hepatocytes. 

For the other formulations, the walls were very thin to be measured for wall thickness. 

Even at high magnification, the edges of the walls can’t be focused properly to distinguish the 

start and the end of the membrane wall. The other formulations tested either formed thin-walled 

capsules, or very fragile (snapping), or were rupturing while washing out the excess polymer, or 

a combination of these remarks. Figure 57 lists phase contrast images for each formulation 

tested. 

  

  

Figure 55:  Phase contrast images (A&B) and SEM images (C&D) of encapsulated hepatocytes in 
chitosan- 2% HA with 1% heparin and double strength collagen fibers.  

B A 

C D 
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Figure 56:  Phase contrast images illustrating the membranes formed in each of the listed formulations. 

 

7.3.2 Encapsulated Hepatocytes (with and without MSCs) Morphology  

The cells aggregated into large cylindrical aggregates (following the shape of the fibers) 

that were floating inside the fibers. They aggregated as one big aggregate in monocultures (Fig. 

57A & B).  In the heterotypic cultures, they appeared as several smaller separate aggregates (Fig. 

57C&D). The fibers were about 0.65 ± 0.13 mm thick. 
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Figure 57:  Phase contrast images of encapsulated hepatocytes in chitosan- 2% HA with 1% heparin and 
double strength collagen fibers. (A & B) Monotypic cultures, (C & D) Heterotypic cultures. 

 

While the fibers looked intact, were easy to handle, and survived the washing and 

shaking steps on the fabrication day (Fig. 58A), they swelled on day 2 (Fig. 58B) and eventually 

ruptured and released all aggregates by day 4 of culture (Fig. 58C). 

   

Figure 58:  Digital images of encapsulated hepatocytes in chitosan- HA- heparin fibers. Digital color 
images of the fibers on (A) day 1, (B) day 2, and (C) day 4. 
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7.3.3 Metabolic Performance of Encapsulated Hepatocytes with/without MSCs 

No statistically significant differences in urea secretion between cultures of encapsulated 

hepatocytes only and cultures of mixed hepatocytes and MSCs. The urea secretion rates were at 

depressed rates compared to collagen gel sandwich controls (Fig. 59A). On the other hand, no 

albumin detected at all in both cultures (Fig. 59B). 

  

Figure 59: Metabolic performance of monotypic and heterotypic cells suspension in chitosan- 2% HA 
with 1% heparin and double strength collagen fibers. (A) Urea, and (B) albumin secretion rates. 

 

7.3.4 Cell Distribution in Fiber Bundle Scaffold 

 Fibers could not be easily wrapped around the connector and form a bundle of fibers in 

the intended way of wrapping procedure illustrated in figure 53 above. Instead, they wrap around 

each other at a concentric bundle dragging the whole scaffold downward (Fig. 60). The wrapping 

was performed to generate the required spacing between the fibers by moving the wrapping rod 

up and down. Histology images revealed that the fibers have spacing between them inside the 

bundle (porous scaffold) (Fig. 61 black arrows), but it looks like there was a membrane at the 

periphery sealing the whole bundle (Fig. 61 red arrows). 
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Figure 60:  Digital image of fixed hepatocytes in fiber bundle scaffold. 

 
  

Figure 61:  Cell distribution and fibers architecture in a wrapped bundle. (Left) H&E histology image of 

a whole cross sectional area for fixed hepatocytes in fiber bundle scaffold. (Right) phase contrast images 

of the fibers bundle. 
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7.4 Discussion 

The hyaluronic acid based fibers makes a promising approach in the field of modular 

tissue engineering. They form thick membranes, easy to handle and elastic fibers which make 

them of a better choice among other GAGs; e.g. chondroitin sulfate A. The major challenge with 

the fiber system presented in this work was the ruptures of the fibers, where they lose their 

contents rapidly even in static culture. The depressed metabolic functions seen were due to the 

loss of the aggregates during media changes. Albumin was not detected because it is considered 

to be a relatively large protein (MW about 67,000 Da) that may have not diffused from the 

aggregates through the membranes walls and into the medium. V. Lin and H. Matthew, 2002  

[121] calculated effective diffusivity for albumin to be the lowest among other materials that 

have lower molecular weights.  

Fibers with diameters higher than 500 µm will generate aggregates of the same diameters 

and those are known to develop necrotic centers  as they will experience mass transfer 

limitations of metabolites and oxygen in the core  [91]. An automated system of pulling the 

fibers at a speed that was less or equal to the extruding rate was required to ensure the minimum 

diameter possible to reach; thinner fibers are preferred as there will be more material to carry a 

given volume load. Another important parameter was the architecture of fiber wrapping that will 

play significant role in overall strength of the loaded scaffold. 

As the remaining GAG solution may stay inside the fibers (GAG molecules that are not 

incorporated to the walls by reacting with chitosan molecules); the water molecules will diffuse 

through the fibers membrane into the fibers interior causing them to swell and eventually 

rupture. Reducing the internal content of GAG by incorporating other particles to the interior 

will be a possible solution to the rupture problem. Currently, other students in our lab are 
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investigating these alternatives; e.g. adding chitosan microcarriers or collagen microcarriers to 

the microcapsules and fibers interiors.  

 

7.5 Conclusions and Future Work  

• Thinner fibers are better to use (should be <300µm); ensure no mass transfer limitations 

and more material to carry a given volume load. 

• The architecture of fiber wrapping plays significant role in overall strength of the loaded 

scaffold. 

• High porous scaffolds with high cell densities can be achieved using the fiber wrapping 

system. The fiber bundles can be also perfused in the bioreactor system once the fiber 

rupturing problem is addressed. 

• Enforcing the fibers membranes with chitosan microfibers to enhance their mechanical 

strength might be a valid solution for the issues faced in this work. 

• Further modifications to the interior of the capsules are needed in order to minimize the 

GAGs content and hence eliminate the rupture issue. Incorporating chitosan microcarriers 

or collagen microcarriers to the interior environment of the fibers will help decreasing the 

GAG content. 

  



www.manaraa.com

119 
 

 

REFERENCES 

[1] J. W. Grisham, "Cell types in rat liver cultures: their identification and isolation," Mol 

Cell Biochem, vol. 53-54, pp. 23-33, 1983. 

[2] T. Koura, S. Kaneko, E. Matsushita, H. Ohno, K. Kaji, and K. Kobayashi, "Investigation 

of albumin-synthesizing ability in rat cirrhotic liver-derived hepatocytes using primary 

hepatocyte culture," J Hepatol, vol. 31, pp. 293-9, Aug 1999. 

[3] J. W. Allen and S. N. Bhatia, "Formation of steady-state oxygen gradients in vitro: 

application to liver zonation," Biotechnol Bioeng, vol. 82, pp. 253-62, May 5 2003. 

[4] A. v. d. Plaats, "The Groningen hypothermic liver perfusion system for improved 

preservation in organ transplantation," Dissertation- University of Gorningen 2005. 

[5] "Hepatic Acini Diagram," Access online: 

http://www.vivo.colostate.edu/hbooks/pathphys/digestion/liver/histo_acinus.html. 

[6] "Digital camera shot of human liver sinusoid through a microscope " Access online: 

http://en.wikipedia.org/wiki/File:Sinusoid.JPG#metadata. 

[7] "Sinusoid of a rat liver with fenestrated endothelial cells," access online: 

http://en.wikipedia.org/wiki/File:Sinusoid.jpeg. 

[8] U.S. Organ Procurement and Transplantation Network. Available: 

http://optn.transplant.hrsa.gov 

[9] T. S. Bentley, "2011 U.S. Organ and Tissue Transplant Cost Estimates and Discussion," 

2011. 

[10] C. Chan, F. Berthiaume, B. D. Nath, A. W. Tilles, M. Toner, and M. L. Yarmush, 

"Hepatic tissue engineering for adjunct and temporary liver support: Critical 

technologies," Liver Transplantation, vol. 10, pp. 1331-1342, 2004. 



www.manaraa.com

120 
 

 

[11] G. Catapano and J. Gerlach, "Bioreactors for liver tissue engineering," Ashammakhi N, 

Reis R, Chiellini E (eds.) Topics in tissue engineering, pp. 1-41, 2007. 

[12] M. Muraca, G. Gerunda, D. Neri, M. T. Vilei, A. Granato, P. Feltracco, et al., 

"Hepatocyte transplantation as a treatment for glycogen storage disease type 1a," Lancet, 

vol. 359, pp. 317-8, Jan 26 2002. 

[13] S. Gupta, "Hepatocyte transplantation," J Gastroenterol Hepatol, vol. 17 Suppl 3, pp. 

S287-93, Dec 2002. 

[14] S. Gupta and J. R. Chowdhury, "Therapeutic potential of hepatocyte transplantation," 

Semin Cell Dev Biol, vol. 13, pp. 439-46, Dec 2002. 

[15] A. J. Strain and J. M. Neuberger, "A bioartificial liver--state of the art," Science, vol. 295, 

pp. 1005-9, Feb 8 2002. 

[16] S. M. Chia, K. W. Leong, J. Li, X. Xu, K. Zeng, P. N. Er, et al., "Hepatocyte 

encapsulation for enhanced cellular functions," Tissue Eng, vol. 6, pp. 481-95, Oct 2000. 

[17] J. S. Lee, J. Shin, H. M. Park, Y. G. Kim, B. G. Kim, J. W. Oh, et al., "Liver extracellular 

matrix providing dual functions of two-dimensional substrate coating and three-

dimensional injectable hydrogel platform for liver tissue engineering," 

Biomacromolecules, vol. 15, pp. 206-18, Jan 13 2014. 

[18] Y. Liu, H. Li, S. Yan, J. Wei, and X. Li, "Hepatocyte cocultures with endothelial cells 

and fibroblasts on micropatterned fibrous mats to promote liver-specific functions and 

capillary formation capabilities," Biomacromolecules, vol. 15, pp. 1044-54, Mar 10 2014. 

[19] K. Lee, E. A. Silva, and D. J. Mooney, "Growth factor delivery-based tissue engineering: 

general approaches and a review of recent developments," J R Soc Interface, vol. 8, pp. 

153-70, Feb 6 2011. 



www.manaraa.com

121 
 

 

[20] J.-k. Park and D.-h. Lee, "Bioartificial liver systems: current status and future 

perspective," Journal of Bioscience and Bioengineering, vol. 99, pp. 311-319, 4// 2005. 

[21] J. Li, L. Li, H. Yu, H. Cao, C. Gao, and Y. Gong, "Growth and Metabolism of Human 

Hepatocytes on Biomodified Collagen Poly(lactic-co-glycolic acid) Three-Dimensional 

Scaffold," ASAIO Journal, vol. 52, pp. 321-327 10.1097/01.mat.0000217794.35830.4a, 

2006. 

[22] K. Gelse, E. Poschl, and T. Aigner, "Collagens--structure, function, and biosynthesis," 

Adv Drug Deliv Rev, vol. 55, pp. 1531-46, Nov 28 2003. 

[23] J. Kasuya and K. Tanishita, "Microporous membrane-based liver tissue engineering for 

the reconstruction of three-dimensional functional liver tissues in vitro," Biomatter, vol. 

2, pp. 290-5, Oct-Dec 2012. 

[24] S. Giri, U. D. Braumann, P. Giri, A. Acikgoz, P. Scheibe, K. Nieber, et al., 

"Nanostructured self-assembling peptides as a defined extracellular matrix for long-term 

functional maintenance of primary hepatocytes in a bioartificial liver modular device," 

Int J Nanomedicine, vol. 8, pp. 1525-39, 2013. 

[25] K. Choi, W. P. Pfund, M. E. Andersen, R. S. Thomas, H. J. Clewell, and E. L. LeCluyse, 

"Development of 3D dynamic flow model of human liver and its application to prediction 

of metabolic clearance of 7-ethoxycoumarin," Tissue Eng Part C Methods, vol. 20, pp. 

641-51, Aug 2014. 

[26] J. Li, J. Pan, L. Zhang, X. Guo, and Y. Yu, "Culture of primary rat hepatocytes within 

porous chitosan scaffolds," Journal of Biomedical Materials Research Part A, vol. 67A, 

pp. 938-943, 2003. 



www.manaraa.com

122 
 

 

[27] X.-H. Chu, X.-L. Shi, Z.-Q. Feng, Z.-Z. Gu, and Y.-T. Ding, "Chitosan nanofiber 

scaffold enhances hepatocyte adhesion and function," Biotechnology Letters, vol. 31, pp. 

347-352, 2009. 

[28] J. C. Y. Dunn, R. G. Tompkins, and M. L. Yarmush, "Long-term in vitro function of 

adult hepatocytes in a collagen sandwich configuration," Biotechnology Progress, vol. 7, 

pp. 237-245, 1991/05/01 1991. 

[29] N. Nieto and M. P. Lutolf, "Extracellular matrix bioengineering and systems biology 

approaches in liver disease," Syst Synth Biol, vol. 5, pp. 11-20, Jun 2011. 

[30] S. V. Madihally and H. W. T. Matthew, "Porous chitosan scaffolds for tissue 

engineering," Biomaterials, vol. 20, pp. 1133-1142, 6// 1999. 

[31] T. Kean and M. Thanou, "Biodegradation, biodistribution and toxicity of chitosan," Adv 

Drug Deliv Rev, vol. 62, pp. 3-11, Jan 31 2010. 

[32] H. Onishi and Y. Machida, "Biodegradation and distribution of water-soluble chitosan in 

mice," Biomaterials, vol. 20, pp. 175-82, Jan 1999. 

[33] E. Khor and L. Y. Lim, "Implantable applications of chitin and chitosan," Biomaterials, 

vol. 24, pp. 2339-49, Jun 2003. 

[34] H. Jiankang, L. Dichen, L. Yaxiong, Y. Bo, Z. Hanxiang, L. Qin, et al., "Preparation of 

chitosan-gelatin hybrid scaffolds with well-organized microstructures for hepatic tissue 

engineering," Acta Biomater, vol. 5, pp. 453-61, Jan 2009. 

[35] T. Bou-Akl, "Design and evaluation of an angiogenic scaffold for hepatocyte 

transplantation," Ph.D. 3225810, Wayne State University, United States -- Michigan, 

2006. 



www.manaraa.com

123 
 

 

[36] M. Warda and R. J. Linhardt, "Dromedary glycosaminoglycans: molecular 

characterization of camel lung and liver heparan sulfate," Comp Biochem Physiol B 

Biochem Mol Biol, vol. 143, pp. 37-43, Jan 2006. 

[37] B. E. Saygili, "Mesenchymal stem cells on polysaccharide based materials: Growth, 

differentiation and potential in neuronal regeneration," Ph.D. 3211001, Wayne State 

University, United States -- Michigan, 2006. 

[38] M. Fujita, D. C. Spray, H. Choi, J. C. Saez, T. Watanabe, L. C. Rosenberg, et al., 

"Glycosaminoglycans and proteoglycans induce gap junction expression and restore 

transcription of tissue-specific mRNAs in primary liver cultures," Hepatology, vol. 7, pp. 

1S-9S, 1987. 

[39] G. T. Hermanson, Bioconjugate techniques: Academic press, 1996. 

[40] D.-K. Kweon, S.-B. Song, and Y.-Y. Park, "Preparation of water-soluble chitosan/heparin 

complex and its application as wound healing accelerator," Biomaterials, vol. 24, pp. 

1595-1601, 4// 2003. 

[41] J. You, D. S. Shin, D. Patel, Y. Gao, and A. Revzin, "Multilayered heparin hydrogel 

microwells for cultivation of primary hepatocytes," Adv Healthc Mater, vol. 3, pp. 126-

32, Jan 2014. 

[42] M. M. Zegers and D. Hoekstra, "Mechanisms and functional features of polarized 

membrane traffic in epithelial and hepatic cells," The Biochemical journal, vol. 336 ( Pt 

2), pp. 257-269, 12/ 1998. 

[43] F. Goulet, C. Normand, and O. Morin, "Cellular interactions promote tissue-specific 

function, biomatrix deposition and junctional communication of primary cultured 

hepatocytes," Hepatology, vol. 8, pp. 1010-1018, 1988. 



www.manaraa.com

124 
 

 

[44] P. V. Moghe, F. Berthiaume, R. M. Ezzell, M. Toner, R. G. Tompkins, and M. L. 

Yarmush, "Culture matrix configuration and composition in the maintenance of 

hepatocyte polarity and function," Biomaterials, vol. 17, pp. 373-385, // 1996. 

[45] B. N. G. Giepmans and S. C. D. van Ijzendoorn, "Epithelial cell–cell junctions and 

plasma membrane domains," Biochimica et Biophysica Acta (BBA) - Biomembranes, vol. 

1788, pp. 820-831, 4// 2009. 

[46] F. Berthiaume, P. V. Moghe, M. Toner, and M. L. Yarmush, "Effect of extracellular 

matrix topology on cell structure, function, and physiological responsiveness: 

hepatocytes cultured in a sandwich configuration," The FASEB Journal, vol. 10, pp. 

1471-84, November 1, 1996 1996. 

[47] S. N. Bhatia, U. J. Balis, M. L. Yarmush, and M. Toner, "Effect of cell–cell interactions 

in preservation of cellular phenotype: cocultivation of hepatocytes and nonparenchymal 

cells," The FASEB Journal, vol. 13, pp. 1883-1900, November 1, 1999 1999. 

[48] J. W. Grisham, "Cell types in rat liver cultures: their identification and isolation," 

Molecular and Cellular Biochemistry, vol. 53-54, pp. 23-33, 1983. 

[49] Y. Nahmias, R. E. Schwartz, W. S. Hu, C. M. Verfaillie, and D. J. Odde, "Endothelium-

mediated hepatocyte recruitment in the establishment of liver-like tissue in vitro," Tissue 

Eng, vol. 12, pp. 1627-38, Jun 2006. 

[50] K. Kim, K. Ohashi, R. Utoh, K. Kano, and T. Okano, "Preserved liver-specific functions 

of hepatocytes in 3D co-culture with endothelial cell sheets," Biomaterials, vol. 33, pp. 

1406-1413, 2// 2012. 



www.manaraa.com

125 
 

 

[51] R. Sudo, S. Chung, I. K. Zervantonakis, V. Vickerman, Y. Toshimitsu, L. G. Griffith, et 

al., "Transport-mediated angiogenesis in 3D epithelial coculture," The FASEB Journal, 

vol. 23, pp. 2155-2164, July 1, 2009 2009. 

[52] A. Soto-Gutierrez, N. Navarro-Alvarez, H. Yagi, Y. Nahmias, M. L. Yarmush, and N. 

Kobayashi, "Engineering of an hepatic organoid to develop liver assist devices," Cell 

Transplant, vol. 19, pp. 815-22, 2010. 

[53] A. Martinez-Hernandez and P. S. Amenta, "The hepatic extracellular matrix. I. 

Components and distribution in normal liver," Virchows Arch A Pathol Anat Histopathol, 

vol. 423, pp. 1-11, 1993. 

[54] A. Martinez-Hernandez and P. S. Amenta, "The hepatic extracellular matrix. II. 

Ontogenesis, regeneration and cirrhosis," Virchows Arch A Pathol Anat Histopathol, vol. 

423, pp. 77-84, 1995. 

[55] H.-F. Lu, K.-N. Chua, P.-C. Zhang, W.-S. Lim, S. Ramakrishna, K. W. Leong, et al., 

"Three-dimensional co-culture of rat hepatocyte spheroids and NIH/3T3 fibroblasts 

enhances hepatocyte functional maintenance," Acta Biomaterialia, vol. 1, pp. 399-410, 

7// 2005. 

[56] S. Abu-Absi, L. Hansen, and W.-S. Hu, "Three-dimensional co-culture of hepatocytes 

and stellate cells," Cytotechnology, vol. 45, pp. 125-140, 2004. 

[57] A. Bader, E. Knop, A. Kern, K. Böker, N. Frühauf, O. Crome, et al., "3-D Coculture of 

Hepatic Sinusoidal Cells with Primary Hepatocytes—Design of an Organotypical 

Model," Experimental Cell Research, vol. 226, pp. 223-233, 7/10/ 1996. 



www.manaraa.com

126 
 

 

[58] K. Yamada, M. Kamihira, and S. Iijima, "Enhanced cell aggregation and liver functions 

using polymers modified with a cell-specific ligand in primary hepatocyte cultures," 

Journal of Bioscience and Bioengineering, vol. 88, pp. 557-562, // 1999. 

[59] A. Gomez-Aristizabal, A. Keating, and J. E. Davies, "Mesenchymal stromal cells as 

supportive cells for hepatocytes," Mol Ther, vol. 17, pp. 1504-8, Sep 2009. 

[60] V. Volarevic, J. Nurkovic, N. Arsenijevic, and M. Stojkovic, "Concise review: 

Therapeutic potential of mesenchymal stem cells for the treatment of acute liver failure 

and cirrhosis," Stem Cells, Aug 22 2014. 

[61] P. Stock, S. Bruckner, S. Winkler, M. M. Dollinger, and B. Christ, "Human Bone 

Marrow Mesenchymal Stem Cell-Derived Hepatocytes Improve the Mouse Liver after 

Acute Acetaminophen Intoxication by Preventing Progress of Injury," International 

Journal of Molecular Sciences, vol. 15, pp. 7004-7028, Apr 2014. 

[62] T. A. Brieva and P. V. Moghe, "Functional engineering of hepatocytes via heterocellular 

presentation of a homoadhesive molecule, E-cadherin," Biotechnology and 

Bioengineering, vol. 76, pp. 295-302, Nov 2001. 

[63] H. He, X. Liu, L. Peng, Z. Gao, Y. Ye, Y. Su, et al., "Promotion of hepatic differentiation 

of bone marrow mesenchymal stem cells on decellularized cell-deposited extracellular 

matrix," Biomed Res Int, vol. 2013, p. 406871, 2013. 

[64] H. Wang, G. M. Riha, S. Yan, M. Li, H. Chai, H. Yang, et al., "Shear stress induces 

endothelial differentiation from a murine embryonic mesenchymal progenitor cell line," 

Arterioscler Thromb Vasc Biol, vol. 25, pp. 1817-23, Sep 2005. 



www.manaraa.com

127 
 

 

[65] M. Y. Chen, P. C. Lie, Z. L. Li, and X. Wei, "Endothelial differentiation of Wharton's 

jelly-derived mesenchymal stem cells in comparison with bone marrow-derived 

mesenchymal stem cells," Exp Hematol, vol. 37, pp. 629-40, May 2009. 

[66] D. Pankajakshan, V. Kansal, and D. K. Agrawal, "In vitro differentiation of bone marrow 

derived porcine mesenchymal stem cells to endothelial cells," J Tissue Eng Regen Med, 

vol. 7, pp. 911-20, Nov 2013. 

[67] J. Chen, H. C. Park, F. Addabbo, J. Ni, E. Pelger, H. Li, et al., "Kidney-derived 

mesenchymal stem cells contribute to vasculogenesis, angiogenesis and endothelial 

repair," Kidney Int, vol. 74, pp. 879-89, Oct 2008. 

[68] J. W. Liu, S. Dunoyer-Geindre, V. Serre-Beinier, G. Mai, J. F. Lambert, R. J. Fish, et al., 

"Characterization of endothelial-like cells derived from human mesenchymal stem cells," 

J Thromb Haemost, vol. 5, pp. 826-34, Apr 2007. 

[69] Y. Cao, Z. Sun, L. Liao, Y. Meng, Q. Han, and R. C. Zhao, "Human adipose tissue-

derived stem cells differentiate into endothelial cells in vitro and improve postnatal 

neovascularization in vivo," Biochem Biophys Res Commun, vol. 332, pp. 370-9, Jul 1 

2005. 

[70] J. Kasuya, R. Sudo, T. Mitaka, M. Ikeda, and K. Tanishita, "Hepatic stellate cell-

mediated three-dimensional hepatocyte and endothelial cell triculture model," Tissue Eng 

Part A, vol. 17, pp. 361-70, Feb 2011. 

[71] J. P. Chen and C. T. Lin, "Dynamic seeding and perfusion culture of hepatocytes with 

galactosylated vegetable sponge in packed-bed bioreactor," Journal of Bioscience and 

Bioengineering, vol. 102, pp. 41-45, Jul 2006. 



www.manaraa.com

128 
 

 

[72] S. S. Bale, L. Vernetti, N. Senutovitch, R. Jindal, M. Hegde, A. Gough, et al., "In vitro 

platforms for evaluating liver toxicity," Exp Biol Med (Maywood), vol. 239, pp. 1180-91, 

Sep 2014. 

[73] A. Nussler, S. Konig, M. Ott, E. Sokal, B. Christ, W. Thasler, et al., "Present status and 

perspectives of cell-based therapies for liver diseases," J Hepatol, vol. 45, pp. 144-59, Jul 

2006. 

[74] F. Timm and B. Vollmar, "Heterogeneity of the intrahepatic portal venous blood flow: 

impact on hepatocyte transplantation," Microvasc Res, vol. 86, pp. 34-41, Mar 2013. 

[75] T. Takebe, K. Sekine, M. Enomura, H. Koike, M. Kimura, T. Ogaeri, et al., 

"Vascularized and functional human liver from an iPSC-derived organ bud transplant," 

Nature, vol. 499, pp. 481-4, Jul 25 2013. 

[76] K. Asonuma, J. C. Gilbert, J. E. Stein, T. Takeda, and J. P. Vacanti, "Quantitation of 

transplanted hepatic mass necessary to cure the gunn rat model of hyperbilirubinemia," 

Journal of Pediatric Surgery, vol. 27, pp. 298-301, 3// 1992. 

[77] N. Rajan, J. Habermehl, M.-F. Cote, C. J. Doillon, and D. Mantovani, "Preparation of 

ready-to-use, storable and reconstituted type I collagen from rat tail tendon for tissue 

engineering applications," Nat. Protocols, vol. 1, pp. 2753-2758, 01//print 2007. 

[78] T. Elsdale and J. Bard, "COLLAGEN SUBSTRATA FOR STUDIES ON CELL 

BEHAVIOR," The Journal of Cell Biology, vol. 54, pp. 626-637, 03/06/received 

04/24/revised 1972. 

[79] P. O. Seglen, "Preparation of isolated rat liver cells," Methods Cell Biol vol. 13, pp. 29-

83, 1976. 



www.manaraa.com

129 
 

 

[80] H. W. T. Matthew, J. Sternberg, P. Stefanovich, J. R. Morgan, M. Toner, R. G. 

Tompkins, et al., "Effects of plasma exposure on cultured hepatocytes: Implications for 

bioartificial liver support," Biotechnology and Bioengineering, vol. 51, pp. 100-111, 

1996. 

[81] J. Yang, A. Ichikawa, and T. Tsuchiya, "A novel function of connexin 32: marked 

enhancement of liver function in a hepatoma cell line," Biochem Biophys Res Commun, 

vol. 307, pp. 80-5, Jul 18 2003. 

[82] J. M. Anderson, B. R. Stevenson, L. A. Jesaitis, D. A. Goodenough, and M. S. Mooseker, 

"Characterization of ZO-1, a protein component of the tight junction from mouse liver 

and Madin-Darby canine kidney cells," J Cell Biol, vol. 106, pp. 1141-9, Apr 1988. 

[83] M. Hegde, R. Jindal, A. Bhushan, S. S. Bale, W. J. McCarty, I. Golberg, et al., "Dynamic 

interplay of flow and collagen stabilizes primary hepatocytes culture in a microfluidic 

platform," Lab Chip, vol. 14, pp. 2033-9, Jun 21 2014. 

[84] E. Rozet, V. Wascotte, et al. , "Improvement of the decision efficiency of the accuracy 

profile by means of a desirability function for analytical methods validation. Application 

to a diacetyl-monoxime colorimetric assay used for the determination of urea in 

transdermal iontophoretic extracts," Anal Chim Acta vol. 591, pp. 239-247, 2007. 

[85] Y. M. Tanaka Y., Okano T., Kitamori T. and Sato K., "Evaluation of effects of shear 

stress on hepatocytes by a microchip-based system," MEASUREMENT SCIENCE AND 

TECHNOLOGY, vol. 17, pp. 3167–3170, 26 October 2006 2006. 

[86] A. Rotem, M. Toner, R. G. Tompkins, and M. L. Yarmush, "Oxygen uptake rates in 

cultured rat hepatocytes," Biotechnol Bioeng, vol. 40, pp. 1286-91, Dec 5 1992. 



www.manaraa.com

130 
 

 

[87] B. D. Foy, A. Rotem, M. Toner, R. G. Tompkins, and M. L. Yarmush, "A device to 

measure the oxygen uptake rate of attached cells: importance in bioartificial organ 

design," Cell Transplant, vol. 3, pp. 515-27, Nov-Dec 1994. 

[88] M. Miyazawa, T. Torii, Y. Toshimitsu, K. Okada, and I. Koyama, "Hepatocyte dynamics 

in a three-dimensional rotating bioreactor," J Gastroenterol Hepatol, vol. 22, pp. 1959-

64, Nov 2007. 

[89] M. J. Powers, K. Domansky, M. R. Kaazempur-Mofrad, A. Kalezi, A. Capitano, A. 

Upadhyaya, et al., "A microfabricated array bioreactor for perfused 3D liver culture," 

Biotechnol Bioeng, vol. 78, pp. 257-69, May 5 2002. 

[90] C. M. Brophy, J. L. Luebke-Wheeler, B. P. Amiot, H. Khan, R. P. Remmel, P. Rinaldo, et 

al., "Rat hepatocyte spheroids formed by rocked technique maintain differentiated 

hepatocyte gene expression and function," Hepatology, vol. 49, pp. 578-86, Feb 2009. 

[91] E. Curcio, S. Salerno, G. Barbieri, L. De Bartolo, E. Drioli, and A. Bader, "Mass transfer 

and metabolic reactions in hepatocyte spheroids cultured in rotating wall gas-permeable 

membrane system," Biomaterials, vol. 28, pp. 5487-97, Dec 2007. 

[92] A. Acikgöz, S. Giri, M.-G. Cho, and A. Bader, "Morphological and Functional Analysis 

of Hepatocyte Spheroids Generated on Poly-HEMA-Treated Surfaces under the Influence 

of Fetal Calf Serum and Nonparenchymal Cells," Biomolecules, vol. 3, pp. 242-269, 

03/07 

12/21/received 

02/07/revised 

02/11/accepted 2013. 



www.manaraa.com

131 
 

 

[93] E. Torok, C. Vogel, M. Lutgehetmann, P. X. Ma, M. Dandri, J. Petersen, et al., 

"Morphological and functional analysis of rat hepatocyte spheroids generated on poly(L-

lactic acid) polymer in a pulsatile flow bioreactor," Tissue Eng, vol. 12, pp. 1881-90, Jul 

2006. 

[94] S. SURAPANENI, T. PRYOR, M. D. KLEIN, and H. W. T. MATTHEW, "Rapid 

Hepatocyte Spheroid Formation: Optimization and Long Term Function in Perfused 

Microcapsules," ASAIO Journal, vol. 43, p. M854, 1997. 

[95] L. D. A. Assay, MAK066 SIGMA: 

http://www.sigmaaldrich.com/catalog/product/sigma/mak066?lang=en&region=US. 

[96] AlamarBlue, Life Technologies: 

http://www.lifetechnologies.com/us/en/home/brands/molecular-probes/key-molecular-

probes-products/alamarblue-rapid-and-accurate-cell-health-indicator.html. 

[97] A. J. Hwa, R. C. Fry, A. Sivaraman, P. T. So, L. D. Samson, D. B. Stolz, et al., "Rat liver 

sinusoidal endothelial cells survive without exogenous VEGF in 3D perfused co-cultures 

with hepatocytes," FASEB J, vol. 21, pp. 2564-79, Aug 2007. 

[98] T. Tokairin, Y. Nishikawa, Y. Doi, H. Watanabe, T. Yoshioka, M. Su, et al., "A highly 

specific isolation of rat sinusoidal endothelial cells by the immunomagnetic bead method 

using SE-1 monoclonal antibody," J Hepatol, vol. 36, pp. 725-33, Jun 2002. 

[99] F. Manconi, R. Markham, and I. S. Fraser, "Culturing endothelial cells of microvascular 

origin," Methods Cell Sci, vol. 22, pp. 89-99, 2000. 

[100] C. Frye and C. Patrick, "Isolation and culture of rat microvascular endothelial cells," In 

Vitro Cellular & Developmental Biology - Animal, vol. 38, pp. 208-212, 2002. 



www.manaraa.com

132 
 

 

[101] J. Oswald, S. Boxberger, B. Jorgensen, S. Feldmann, G. Ehninger, M. Bornhauser, et al., 

"Mesenchymal stem cells can be differentiated into endothelial cells in vitro," Stem Cells, 

vol. 22, pp. 377-384, 2004. 

[102] K. H. Wu, B. Zhou, S. H. Lu, B. Feng, S. G. Yang, W. T. Du, et al., "In vitro and in vivo 

differentiation of human umbilical cord derived stem cells into endothelial cells," J Cell 

Biochem, vol. 100, pp. 608-16, Feb 15 2007. 

[103] A. Piryaei, M. R. Valojerdi, M. Shahsavani, and H. Baharvand, "Differentiation of bone 

marrow-derived mesenchymal stem cells into hepatocyte-like cells on nanofibers and 

their transplantation into a carbon tetrachloride-induced liver fibrosis model," Stem Cell 

Rev, vol. 7, pp. 103-18, Mar 2011. 

[104] N. Lin, J. Lin, L. Bo, P. Weidong, S. Chen, and R. Xu, "Differentiation of bone marrow-

derived mesenchymal stem cells into hepatocyte-like cells in an alginate scaffold," Cell 

Prolif, vol. 43, pp. 427-34, Oct 2010. 

[105] S. Snykers, J. De Kock, V. Tamara, and V. Rogiers, "Hepatic differentiation of 

mesenchymal stem cells: in vitro strategies," Methods Mol Biol, vol. 698, pp. 305-14, 

2011. 

[106] S. Snykers, T. Vanhaecke, P. Papeleu, A. Luttun, Y. Jiang, Y. Vander Heyden, et al., 

"Sequential exposure to cytokines reflecting embryogenesis: the key for in vitro 

differentiation of adult bone marrow stem cells into functional hepatocyte-like cells," 

Toxicol Sci, vol. 94, pp. 330-41; discussion 235-9, Dec 2006. 

[107] I. R. Murray, C. C. West, W. R. Hardy, A. W. James, T. S. Park, A. Nguyen, et al., 

"Natural history of mesenchymal stem cells, from vessel walls to culture vessels," Cell 

Mol Life Sci, vol. 71, pp. 1353-74, Apr 2014. 



www.manaraa.com

133 
 

 

[108] E. Karaoz, A. Aksoy, S. Ayhan, A. E. Sariboyaci, F. Kaymaz, and M. Kasap, 

"Characterization of mesenchymal stem cells from rat bone marrow: ultrastructural 

properties, differentiation potential and immunophenotypic markers," Histochem Cell 

Biol, vol. 132, pp. 533-46, Nov 2009. 

[109] J. Gu, X. Shi, Y. Zhang, and Y. Ding, "Heterotypic interactions in the preservation of 

morphology and functionality of porcine hepatocytes by bone marrow mesenchymal stem 

cells in vitro," J Cell Physiol, vol. 219, pp. 100-8, Apr 2009. 

[110] R. Glicklis, J. C. Merchuk, and S. Cohen, "Modeling mass transfer in hepatocyte 

spheroids via cell viability, spheroid size, and hepatocellular functions," Biotechnol 

Bioeng, vol. 86, pp. 672-80, Jun 20 2004. 

[111] T. Kashiwagura, D. F. Wilson, and M. Erecinska, "Oxygen dependence of cellular 

metabolism: the effect of O2 tension on gluconeogenesis and urea synthesis in isolated 

rat hepatocytes," J Cell Physiol, vol. 120, pp. 13-8, Jul 1984. 

[112] W. M. Saltzman, "Engineering Principles for the Design of Replacement Organs and 

Tissues," Oxford University Press, p. Appendix B, 2004. 

[113] K. Isoda, M. Kojima, M. Takeda, S. Higashiyama, M. Kawase, and K. Yagi, 

"Maintenance of hepatocyte functions by coculture with bone marrow stromal cells," J 

Biosci Bioeng, vol. 97, pp. 343-6, 2004. 

[114] T. Yuki, Y. Masayuki, O. Teruo, K. Takehiko, and S. Kiichi, "Evaluation of effects of 

shear stress on hepatocytes by a microchip-based system," Measurement Science and 

Technology, vol. 17, p. 3167, 2006. 



www.manaraa.com

134 
 

 

[115] M. M. Salek, P. Sattari, and R. J. Martinuzzi, "Analysis of fluid flow and wall shear 

stress patterns inside partially filled agitated culture well plates," Ann Biomed Eng, vol. 

40, pp. 707-28, Mar 2012. 

[116] A. W. Tilles, H. Baskaran, P. Roy, M. L. Yarmush, and M. Toner, "Effects of 

oxygenation and flow on the viability and function of rat hepatocytes cocultured in a 

microchannel flat-plate bioreactor," Biotechnol Bioeng, vol. 73, pp. 379-89, Jun 5 2001. 

[117] R. N. Palchesko, J. M. Szymanski, A. Sahu, and A. W. Feinberg, "Shrink Wrapping Cells 

in a Defined Extracellular Matrix to Modulate the Chemo-Mechanical 

Microenvironment," Cell Mol Bioeng, vol. 7, pp. 355-368, Sep 2014. 

[118] H. W. Matthew, S. O. Salley, W. D. Peterson, and M. D. Klein, "Complex coacervate 

microcapsules for mammalian cell culture and artificial organ development," Biotechnol 

Prog, vol. 9, pp. 510-9, Sep-Oct 1993. 

[119] E. T. Papoutsakis, "Media additives for protecting freely suspended animal cells against 

agitation and aeration damage," Trends Biotechnol, vol. 9, pp. 316-24, Sep 1991. 

[120] R. Tiruvannamalai-Annamalai, D. R. Armant, and H. W. Matthew, "A 

glycosaminoglycan based, modular tissue scaffold system for rapid assembly of 

perfusable, high cell density, engineered tissues," PLoS One, vol. 9, p. e84287, 2014. 

[121] V. S. Lin and H. W. T. Matthew, "Microencapsulation Methods: Glycosaminoglycans 

and Chitosan," Methods of Tissue Engineering, vol. Chapter 72, pp. 815-823, 2002. 

[122] H. W. Matthew, S. Basu, W. D. Peterson, S. O. Salley, and M. D. Klein, "Performance of 

plasma-perfused, microencapsulated hepatocytes: prospects for extracorporeal liver 

support," J Pediatr Surg, vol. 28, pp. 1423-7; discussion 1427-8, Nov 1993. 

   



www.manaraa.com

135 
 

 

ABSTRACT 

 

DEVELOPMENT OF SCAFFOLD ARCHITECTURES AND HETEROTYPIC CELL 

SYSTEMS FOR HEPATOCYTE TRANSPLANTATION  

 

 by 

DALIA ABDELRAHIM ALZEBDEH 

May 2015 

 

Advisor: Dr. Howard W. T. Matthew 

Major: Biomedical Engineering 

Degree: Doctor of Philosophy 

 

In vitro assembly of functional liver tissue is needed to enable the transplantation of 

tissue-engineered livers. In addition, there is an increasing demand for in vitro models that 

replicate complex events occurring in the liver. However, tissue engineering of sizable 

implantable liver systems is currently limited by the difficulty of assembling three dimensional 

hepatocyte cultures of a useful size, while maintaining full cell viability, an issue which is 

closely related to the high metabolic rate of hepatocytes. In this study, we first compared two 

designs of highly porous chitosan-heparin scaffolds seeded with hepatocytes in dynamic 

perfusion bioreactor systems. The aim was to promote cell seeding efficiency by effectively 

entrapping 100 million hepatocytes at high density. We found that scaffolds with radially 

tapering pore architecture had highly efficient cell entrapment that maximized donor hepatocyte 

utilization, compared to alternate pore structures. Hepatocytes showed higher seeding efficiency 
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and metabolic function when seeded as single cell suspensions as opposed to pre-formed, 100µm 

aggregates. Seeding efficiency was found to increase with flow rate, with single cell and 

aggregate suspension exhibiting different optimal flow rates. However, metabolic performance 

results indicated significant shear damage to cells at high efficiency flow rates. To better 

maintain hepatocyte basement membrane and cell polarity, spheroid co-cultures with 

mesenchymal stem cells (MSC) were investigated. Hepatocytes and MSCs were seeded in three 

different architectures in an effort to optimize the spatial arrangement of the two cell types. MSC 

co-culture greatly enhanced hepatocyte metabolic function in agitated cultures. Interestingly, the 

effects of diffusion limitations in spheroid culture, coupled with shear damage and subsequent 

removal of outer hepatocyte layers produced a defined oscillation of urea production rates in 

certain co-culture arrangements. A mathematical model of urea synthesis in shear-exposed, co-

culture spheroids reproduced the metabolic oscillations observed. This result together with 

culture observations suggests that MSCs can provide both physiological support and some direct 

shear protection to hepatocytes in perfused or shear-exposed culture environments. Finally, in 

order to reduce hepatocyte exposure to excessive shear forces in perfused scaffolds, a modular 

scaffold design based on polyelectrolyte fiber encapsulation was explored. Scaffolds with 

uniformly distributed, shear protected cells were achieved.    
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